What is the hamiltonian formalism?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 1, pp. 177-202

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the basic concepts of the classical Hamiltonian formalism are translated into algebraic language. We treat the Hamiltonian formalism as a constituent part of the general theory of linear differential operators on commutative rings with identity. We take particular care in motivating the concepts we introduce. As an illustration of the theory presented here, we examine the Hamiltonian formalism in Lie algebras. We conclude by presenting a version of the “orbit method” in the theory of representations of Lie groups, which is a natural corollary of our view of the Hamiltonian formalism.
@article{RM_1975_30_1_a3,
     author = {A. M. Vinogradov and I. S. Krasil'shchik},
     title = {What is the hamiltonian formalism?},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {177--202},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_1_a3/}
}
TY  - JOUR
AU  - A. M. Vinogradov
AU  - I. S. Krasil'shchik
TI  - What is the hamiltonian formalism?
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 177
EP  - 202
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_1_a3/
LA  - en
ID  - RM_1975_30_1_a3
ER  - 
%0 Journal Article
%A A. M. Vinogradov
%A I. S. Krasil'shchik
%T What is the hamiltonian formalism?
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 177-202
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1975_30_1_a3/
%G en
%F RM_1975_30_1_a3
A. M. Vinogradov; I. S. Krasil'shchik. What is the hamiltonian formalism?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 1, pp. 177-202. http://geodesic.mathdoc.fr/item/RM_1975_30_1_a3/