Diffusion processes fnd Riemannian geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 1, pp. 1-63

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the asymptotic behaviour as $t\to 0$ of the transition density of a diffusion process on a smooth manifold. The results are stated in the language of differential geometry. We look at applications of the asymptotic formulae to the local structure of diffusion processes and to spectral theory.
@article{RM_1975_30_1_a0,
     author = {S. A. Molchanov},
     title = {Diffusion processes fnd {Riemannian} geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--63},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_1_a0/}
}
TY  - JOUR
AU  - S. A. Molchanov
TI  - Diffusion processes fnd Riemannian geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 1
EP  - 63
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_1_a0/
LA  - en
ID  - RM_1975_30_1_a0
ER  - 
%0 Journal Article
%A S. A. Molchanov
%T Diffusion processes fnd Riemannian geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 1-63
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1975_30_1_a0/
%G en
%F RM_1975_30_1_a0
S. A. Molchanov. Diffusion processes fnd Riemannian geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 1, pp. 1-63. http://geodesic.mathdoc.fr/item/RM_1975_30_1_a0/