Fundamental solutions and lacunae of quasihyperbolic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 2, pp. 158-169
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to a study of the behaviour of the solution to the Cauchy problem for the quasihyperbolic equation (1) (defined below in §1).
For such equations, as we shall show, certain regions inside the base of the characteristic cone can turn out to be lacunae or weak lacunae (defined in §1).
Next we show that each quasihyperbolic equation (1) can be regarded as the limit for some hyperbolic equation whose coefficients in the series of higher derivatives in $t$ tend to zero. We establish a connection between fundamental solutions to the Cauchy problem for both equations.
The statements of the main results have been published in [1].
@article{RM_1974_29_2_a10,
author = {S. A. Gal'pern},
title = {Fundamental solutions and lacunae of quasihyperbolic equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {158--169},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_2_a10/}
}
TY - JOUR AU - S. A. Gal'pern TI - Fundamental solutions and lacunae of quasihyperbolic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 SP - 158 EP - 169 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1974_29_2_a10/ LA - en ID - RM_1974_29_2_a10 ER -
S. A. Gal'pern. Fundamental solutions and lacunae of quasihyperbolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 2, pp. 158-169. http://geodesic.mathdoc.fr/item/RM_1974_29_2_a10/