An elementary exposition of G\"odel's incompleteness theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 1, pp. 63-106

Voir la notice de l'article provenant de la source Math-Net.Ru

Godel's incompleteness theorem states that there is no system of axioms and rules of inference such that the totality of all assertions deducible from the axioms is the same as the totality of all true assertions in arithmetic (indeed, for every consistent system one can construct effectively a true but unprovable assertion). The present article is devoted to a proof of this theorem, based on the concepts and methods of the theory of algorithms; the necessary information from the theory of algorithms is provided. The paper does not require specialized knowledge of any kind (in particular, none from mathematical logic), but assumes only a familiarity with elementary mathematical terminology and symbolism.
@article{RM_1974_29_1_a6,
     author = {V. A. Uspenskii},
     title = {An elementary exposition of {G\"odel's} incompleteness theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {63--106},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1974_29_1_a6/}
}
TY  - JOUR
AU  - V. A. Uspenskii
TI  - An elementary exposition of G\"odel's incompleteness theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1974
SP  - 63
EP  - 106
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1974_29_1_a6/
LA  - en
ID  - RM_1974_29_1_a6
ER  - 
%0 Journal Article
%A V. A. Uspenskii
%T An elementary exposition of G\"odel's incompleteness theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1974
%P 63-106
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1974_29_1_a6/
%G en
%F RM_1974_29_1_a6
V. A. Uspenskii. An elementary exposition of G\"odel's incompleteness theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 1, pp. 63-106. http://geodesic.mathdoc.fr/item/RM_1974_29_1_a6/