Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 5, pp. 87-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a construction of the irreducible unitary representations of the group of continuous transformations $X\to G$, where $X$ is a compact space with a measure $m$ and $G=PSL(2,\mathbf R)$, that commute with transformations in $X$ preserving $m$. This construction is the starting point for a non-commutative theory of generalized functions (distributions). On the other hand, this approach makes it possible to treat the representations of the group of currents investigated by Streater, Araki, Parthasarathy, and Schmidt from a single point of view.
@article{RM_1973_28_5_a5,
     author = {A. M. Vershik and I. M. Gel'fand and M. I. Graev},
     title = {Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {87--132},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - I. M. Gel'fand
AU  - M. I. Graev
TI  - Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
SP  - 87
EP  - 132
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/
LA  - en
ID  - RM_1973_28_5_a5
ER  - 
%0 Journal Article
%A A. M. Vershik
%A I. M. Gel'fand
%A M. I. Graev
%T Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%P 87-132
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/
%G en
%F RM_1973_28_5_a5
A. M. Vershik; I. M. Gel'fand; M. I. Graev. Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 5, pp. 87-132. http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/