Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 5, pp. 87-132
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a construction of the irreducible unitary representations of the group of continuous transformations $X\to G$, where $X$ is a compact space with a measure $m$ and $G=PSL(2,\mathbf R)$, that commute with transformations in $X$ preserving $m$.
This construction is the starting point for a non-commutative theory of generalized functions (distributions). On the other hand, this approach makes it possible to treat the representations of the group of currents investigated by Streater, Araki, Parthasarathy, and Schmidt from a single point of view.
@article{RM_1973_28_5_a5,
author = {A. M. Vershik and I. M. Gel'fand and M. I. Graev},
title = {Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {87--132},
publisher = {mathdoc},
volume = {28},
number = {5},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/}
}
TY - JOUR AU - A. M. Vershik AU - I. M. Gel'fand AU - M. I. Graev TI - Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1973 SP - 87 EP - 132 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/ LA - en ID - RM_1973_28_5_a5 ER -
%0 Journal Article %A A. M. Vershik %A I. M. Gel'fand %A M. I. Graev %T Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1973 %P 87-132 %V 28 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/ %G en %F RM_1973_28_5_a5
A. M. Vershik; I. M. Gel'fand; M. I. Graev. Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a~ring of functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 5, pp. 87-132. http://geodesic.mathdoc.fr/item/RM_1973_28_5_a5/