The matrix Riccati differential equation and the semi-group of linear fractional transformations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3, pp. 89-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix Riccati differential equation is discussed, from the point of view of dissipativity or conservativity of its solutions. A survey is given of results relating to analytic properties of these solutions and to the geometry of the corresponding semigroup of matrix linear fractional transformations; further, a probabilistic interpretation is given of the properties of being dissipative or conservative, and the connection between dissipativity of the solutions of the Riccati equation and the stability of the screw method is studied. Physical and technical applications of the mathematical theory are given. There are 87 references.
@article{RM_1973_28_3_a3,
     author = {M. H. Zakhar-Itkin},
     title = {The matrix {Riccati} differential equation and the semi-group of linear fractional transformations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {89--131},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a3/}
}
TY  - JOUR
AU  - M. H. Zakhar-Itkin
TI  - The matrix Riccati differential equation and the semi-group of linear fractional transformations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
SP  - 89
EP  - 131
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a3/
LA  - en
ID  - RM_1973_28_3_a3
ER  - 
%0 Journal Article
%A M. H. Zakhar-Itkin
%T The matrix Riccati differential equation and the semi-group of linear fractional transformations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%P 89-131
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1973_28_3_a3/
%G en
%F RM_1973_28_3_a3
M. H. Zakhar-Itkin. The matrix Riccati differential equation and the semi-group of linear fractional transformations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3, pp. 89-131. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a3/