The spectrum of a~family of operators in the theory of elasticity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3, pp. 45-88

Voir la notice de l'article provenant de la source Math-Net.Ru

The vector equation of the static theory of elasticity for a homogeneous isotropic medium is \begin{equation} \label{1} \Delta u+\operatorname{grad}\operatorname{div}u=F(x), \end{equation} where $\omega(1-2\sigma)^{-1}$, and $\sigma$ is Poisson's constant, $\omega$ being treated as a spectral parameter. This is then the problem: to examine the spectrum of the family of operators on the left-hand side of (1) for boundary conditions of first or second kind. The problem was first posed at the end of the 19th century by Eugéne and Franзois Cosserat; it has been investigated in recent years by V. G. Maz'ya and the present author. The main results obtained are for an elastic domain $\Omega$, which may be finite, or infinite with a sufficiently smooth finite boundary. In the case of the first boundary-value problem the family operators of the theory of elasticity has a countable system of eigenvectors, orthogonal in the metric of the Dirichlet integral; this system is complete in each of the spaces $\overset{\circ}W_2^{(1)}(\Omega)$ and $\L_2(\Omega)$. The eigenvalues condense at the three points $\omega=-1,-2,\infty;$ $\omega=-1$ and $\omega=\infty$ are isolated eigenvalues of infinite multiplicity. Similar results are obtained also, for the second boundary-value problem. The essential difference lies in the fact that in this case the eigenvalues have one further condensation point $\omega=0$, and examples show that $\omega=-2$ need not be a point of condensation for eigenvalues of the second problem.
@article{RM_1973_28_3_a2,
     author = {S. G. Mikhlin},
     title = {The spectrum of a~family of operators in the theory of elasticity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {45--88},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a2/}
}
TY  - JOUR
AU  - S. G. Mikhlin
TI  - The spectrum of a~family of operators in the theory of elasticity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
SP  - 45
EP  - 88
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a2/
LA  - en
ID  - RM_1973_28_3_a2
ER  - 
%0 Journal Article
%A S. G. Mikhlin
%T The spectrum of a~family of operators in the theory of elasticity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%P 45-88
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1973_28_3_a2/
%G en
%F RM_1973_28_3_a2
S. G. Mikhlin. The spectrum of a~family of operators in the theory of elasticity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3, pp. 45-88. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a2/