Schubert cells and cohomology of the spaces $G/P$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3, pp. 1-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the homological properties of the factor space $G/P$, where $G$ is a complex semisimple Lie group and $P$ a parabolic subgroup of $G$. To this end we compare two descriptions of the cohomology of such spaces. One of these makes use of the partition of $G/P$ into cells (Schubert cells), while the other consists in identifying the cohomology of $G/P$ with certain polynomials on the Lie algebra of the Cartan subgroup $H$ of $G$. The results obtained are used to describe the algebraic action of the Weyl group $W$ of $G$ on the cohomology of $G/P$.
@article{RM_1973_28_3_a0,
author = {J. H. Bernstein and I. M. Gel'fand and S. I. Gel'fand},
title = {Schubert cells and cohomology of the spaces $G/P$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--26},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a0/}
}
TY - JOUR AU - J. H. Bernstein AU - I. M. Gel'fand AU - S. I. Gel'fand TI - Schubert cells and cohomology of the spaces $G/P$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1973 SP - 1 EP - 26 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a0/ LA - en ID - RM_1973_28_3_a0 ER -
J. H. Bernstein; I. M. Gel'fand; S. I. Gel'fand. Schubert cells and cohomology of the spaces $G/P$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3, pp. 1-26. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a0/