Certain lattices of metabelian nilpotent varieties of groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1972_27_6_a9,
     author = {Yu. A. Belov},
     title = {Certain lattices of metabelian nilpotent varieties of groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1972},
     volume = {27},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_6_a9/}
}
TY  - JOUR
AU  - Yu. A. Belov
TI  - Certain lattices of metabelian nilpotent varieties of groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
VL  - 27
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_6_a9/
LA  - ru
ID  - RM_1972_27_6_a9
ER  - 
%0 Journal Article
%A Yu. A. Belov
%T Certain lattices of metabelian nilpotent varieties of groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%V 27
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1972_27_6_a9/
%G ru
%F RM_1972_27_6_a9
Yu. A. Belov. Certain lattices of metabelian nilpotent varieties of groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 6. http://geodesic.mathdoc.fr/item/RM_1972_27_6_a9/

[1] B. Jonsson, “Varieties of groups of nilpotency tree”, Notices Amer. MS, 13:4 (1966), 488

[2] V. N. Remeslennikov, “Dva zamechaniya o 3-stupenno nilpotentnykh gruppakh”, Algebra i logika, seminar, 4:2 (1965), 59–66 | MR

[3] Kh. Neiman, Mnogoobraziya grupp, «Mir», M., 1969 | MR

[4] W. Brisley, “Varieties of metabelian $p$-groups of class $p$, $p+1$”, J. Austral. MS, 12:1 (1971), 53–62 | DOI | MR | Zbl

[5] A. G. Kurosh, Teoriya grupp, 3-e izd., «Nauka», M., 1967 | MR | Zbl

[6] Yu. A. Belov, “K voprosu o reshetke nilpotentnykh mnogoobrazii grupp klassa 4”, Algebra i logika, seminar, 9:6 (1970), 623–628 | MR | Zbl

[7] Yu. A. Belov, “O nekotorykh klassakh metabelevykh nilpotentnykh mnogoobrazii, grupp”, XI Vsesoyuznyi algebraicheskii kollokvium, Doklady i soobscheniya, Kishinev, 1971, 10–11 | MR | Zbl