The cauchy problem and other related problems for convolution equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 4, pp. 71-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Spaces of generalized functions with exponential asymptotic behaviour are considered. Convolutors in these spaces are completely described. It is shown that a convolution equation is uniquely soluble if and only if there exists a fundamental solution that is a convolutor. The explicit description of convolutors renders this condition effective. In particular, Petrovskii's correctness condition is obtained in the case of differential equations. A calculus of pseudodifferential operators with inhomogeneous symbols of constant strength is constructed; the solubility of the Cauchy problem can be proved by means of this calculus for a certain class of differential equations with variable coefficients.
@article{RM_1972_27_4_a2,
     author = {L. R. Volevich and S. G. Gindikin},
     title = {The cauchy problem and other related problems for convolution equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {71--160},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/}
}
TY  - JOUR
AU  - L. R. Volevich
AU  - S. G. Gindikin
TI  - The cauchy problem and other related problems for convolution equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
SP  - 71
EP  - 160
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/
LA  - en
ID  - RM_1972_27_4_a2
ER  - 
%0 Journal Article
%A L. R. Volevich
%A S. G. Gindikin
%T The cauchy problem and other related problems for convolution equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%P 71-160
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/
%G en
%F RM_1972_27_4_a2
L. R. Volevich; S. G. Gindikin. The cauchy problem and other related problems for convolution equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 4, pp. 71-160. http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/