The cauchy problem and other related problems for convolution equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 4, pp. 71-160
Voir la notice de l'article provenant de la source Math-Net.Ru
Spaces of generalized functions with exponential asymptotic behaviour are considered. Convolutors in these spaces are completely described. It is shown that a convolution equation is uniquely soluble if and only if there exists a fundamental solution that is a convolutor. The explicit description of convolutors renders this condition effective. In particular, Petrovskii's correctness condition is obtained in the case of differential equations. A calculus of pseudodifferential operators with inhomogeneous symbols of constant strength is constructed; the solubility of the Cauchy problem can be proved by means of this calculus for a certain class of differential equations with variable coefficients.
@article{RM_1972_27_4_a2,
author = {L. R. Volevich and S. G. Gindikin},
title = {The cauchy problem and other related problems for convolution equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {71--160},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/}
}
TY - JOUR AU - L. R. Volevich AU - S. G. Gindikin TI - The cauchy problem and other related problems for convolution equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1972 SP - 71 EP - 160 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/ LA - en ID - RM_1972_27_4_a2 ER -
%0 Journal Article %A L. R. Volevich %A S. G. Gindikin %T The cauchy problem and other related problems for convolution equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1972 %P 71-160 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/ %G en %F RM_1972_27_4_a2
L. R. Volevich; S. G. Gindikin. The cauchy problem and other related problems for convolution equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 4, pp. 71-160. http://geodesic.mathdoc.fr/item/RM_1972_27_4_a2/