On local smoothness of generalized and hypoellipticity of second order differential equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 2, pp. 139-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a survey of results on hypoellipticity of second order differential operators. In particular, our new theorems together with earlier results give a necessary and sufficient condition for hypoellipticity of a general second order differential operator with analytic coefficients, provided that it is not fully degenerate at any point of the domain. We dedicate this paper to I. G. Petrovskii on the occasion of his seventieth birthday.
@article{RM_1971_26_2_a8,
     author = {O. A. Oleinik and E. V. Radkevich},
     title = {On local smoothness of generalized and hypoellipticity of second order differential equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {139--156},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1971_26_2_a8/}
}
TY  - JOUR
AU  - O. A. Oleinik
AU  - E. V. Radkevich
TI  - On local smoothness of generalized and hypoellipticity of second order differential equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
SP  - 139
EP  - 156
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1971_26_2_a8/
LA  - en
ID  - RM_1971_26_2_a8
ER  - 
%0 Journal Article
%A O. A. Oleinik
%A E. V. Radkevich
%T On local smoothness of generalized and hypoellipticity of second order differential equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%P 139-156
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1971_26_2_a8/
%G en
%F RM_1971_26_2_a8
O. A. Oleinik; E. V. Radkevich. On local smoothness of generalized and hypoellipticity of second order differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 2, pp. 139-156. http://geodesic.mathdoc.fr/item/RM_1971_26_2_a8/