The parametrix of elliptic operators with infinitely many independent variables
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 2, pp. 91-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Among the differential equations with infinitely many independent variables most attention has been paid to second-order parabolic equations. The paper begins with a rief review of the results obtained for the Cauchy problem for such equations. The parametrix is constructed for a ertain class of elliptic differential operators with infinitely many variables. This parametrix is generated by a easure in the corresponding function space. A omposition formula for an elliptic differential operator and its parametrix is proved. Applications are given to the theory of the solubility of elliptic equations with infinitely many variables.
@article{RM_1971_26_2_a5,
     author = {M. I. Vishik},
     title = {The parametrix of elliptic operators with infinitely many independent variables},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--112},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1971_26_2_a5/}
}
TY  - JOUR
AU  - M. I. Vishik
TI  - The parametrix of elliptic operators with infinitely many independent variables
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
SP  - 91
EP  - 112
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1971_26_2_a5/
LA  - en
ID  - RM_1971_26_2_a5
ER  - 
%0 Journal Article
%A M. I. Vishik
%T The parametrix of elliptic operators with infinitely many independent variables
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%P 91-112
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1971_26_2_a5/
%G en
%F RM_1971_26_2_a5
M. I. Vishik. The parametrix of elliptic operators with infinitely many independent variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 2, pp. 91-112. http://geodesic.mathdoc.fr/item/RM_1971_26_2_a5/