The stationary phase method and pseudodifferential operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 1, pp. 65-115

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper asymptotic expansions are calculated for integrals $$ \int f(x)\exp(i\lambda g(x))dx,\qquad\lambda\to+\infty, $$ of rapidly oscillating functions, in which $x\in R^n$, $f$ and $g$ are smooth functions, and $g$ is real-valued. The results obtained serve to develop a calculus of pseudodifferential operators and generalizations of them, the Fourier integral operators.
@article{RM_1971_26_1_a1,
     author = {M. V. Fedoryuk},
     title = {The stationary phase method and pseudodifferential operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--115},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1971_26_1_a1/}
}
TY  - JOUR
AU  - M. V. Fedoryuk
TI  - The stationary phase method and pseudodifferential operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
SP  - 65
EP  - 115
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1971_26_1_a1/
LA  - en
ID  - RM_1971_26_1_a1
ER  - 
%0 Journal Article
%A M. V. Fedoryuk
%T The stationary phase method and pseudodifferential operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%P 65-115
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1971_26_1_a1/
%G en
%F RM_1971_26_1_a1
M. V. Fedoryuk. The stationary phase method and pseudodifferential operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 1, pp. 65-115. http://geodesic.mathdoc.fr/item/RM_1971_26_1_a1/