The stationary phase method and pseudodifferential operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 1, pp. 65-115
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper asymptotic expansions are calculated for integrals
$$
\int f(x)\exp(i\lambda g(x))dx,\qquad\lambda\to+\infty,
$$
of rapidly oscillating functions, in which $x\in R^n$, $f$ and $g$ are smooth functions, and $g$ is real-valued. The results obtained serve to develop a calculus of pseudodifferential operators and generalizations of them, the Fourier integral operators.
@article{RM_1971_26_1_a1,
author = {M. V. Fedoryuk},
title = {The stationary phase method and pseudodifferential operators},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {65--115},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1971_26_1_a1/}
}
M. V. Fedoryuk. The stationary phase method and pseudodifferential operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 1, pp. 65-115. http://geodesic.mathdoc.fr/item/RM_1971_26_1_a1/