Homological methods in the theory of locally convex spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 1, pp. 1-64

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the categories of direct and inverse countable spectra of locally convex spaces and with the functors of inductive and projective limits defined on these categories. We study the homological properties of such functors, introduce their satellites, and search for conditions for these satellites to vanish. We then apply the accumulated information about the functors of the limiting processes to certain problems in the theory of locally convex spaces: topological properties of a locally convex inductive limit, the homomorphism of the adjoint operator, the possibility of extending and lifting a map and the properties of the augmentation functor. We also consider examples of certain “pathologies”.
@article{RM_1971_26_1_a0,
     author = {V. P. Palamodov},
     title = {Homological methods in the theory of locally convex spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--64},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1971_26_1_a0/}
}
TY  - JOUR
AU  - V. P. Palamodov
TI  - Homological methods in the theory of locally convex spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
SP  - 1
EP  - 64
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1971_26_1_a0/
LA  - en
ID  - RM_1971_26_1_a0
ER  - 
%0 Journal Article
%A V. P. Palamodov
%T Homological methods in the theory of locally convex spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%P 1-64
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1971_26_1_a0/
%G en
%F RM_1971_26_1_a0
V. P. Palamodov. Homological methods in the theory of locally convex spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 1, pp. 1-64. http://geodesic.mathdoc.fr/item/RM_1971_26_1_a0/