On small random perturbations of dynamical systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 1, pp. 1-55

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the effect on a dynamical system $\dot x_t=b(x_t)$ of small random perturbations of the type of white noise: $$ \dot x_t^\varepsilon=b^\varepsilon(x_t^\varepsilon) +\varepsilon \sigma (x_t^\varepsilon)\bar\xi_t, $$ where $\xi_t$ is the $r$-dimensional Wiener process and $b^\varepsilon(x)\to b(x)$ as $\varepsilon\to 0$. We are mainly concerned with the effect of these perturbations on long time-intervals that increase with the decreasing $\varepsilon$. We discuss two problems: the first is the behaviour of the invariant measure $\mu^\varepsilon$ of the process $x_t^\varepsilon$ as $\varepsilon\to 0$, and the second is the distribution of the position of a trajectory at the first time of its exit from a compact domain. An important role is played in these problems by an estimate of the probability for a trajectory of $x_t^\varepsilon$ not to deviate from a smooth function $\varphi_t$ by more than $\delta$ during the time $[0, T]$. It turns out that the main term of this probability for sma $\varepsilon$ and $\delta$ has the form $\exp\bigl\{-\frac{1}{2\varepsilon^2}I(\varphi)\bigr\}$ where $I(\varphi)$, is a certain non-negative functional of $\varphi_t$. A function $V(x,y)$, the minimum o $I(\varphi)$ over the set of all functions connecting $x$ and $y$, is involved in the answers to both the problems. By means of $V(x,y)$ we introduce an independent of perturbations relation of equivalence in the phase-space. We show, under certain assumption, at what point of the phase-space the invariant measure concentrates in the limit. In both the problems we approximate the process in question by a certain Markov chain; the answers depend on the behaviour of $V(x,y)$ on graphs that are associated with this chain. Let us remark that the second problem is closely related to the behaviour of the solution of a Dirichlet problem with a small parameter at the highest derivatives.
@article{RM_1970_25_1_a0,
     author = {A. D. Venttsel' and M. I. Freidlin},
     title = {On small random perturbations of dynamical systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--55},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/}
}
TY  - JOUR
AU  - A. D. Venttsel'
AU  - M. I. Freidlin
TI  - On small random perturbations of dynamical systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1970
SP  - 1
EP  - 55
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/
LA  - en
ID  - RM_1970_25_1_a0
ER  - 
%0 Journal Article
%A A. D. Venttsel'
%A M. I. Freidlin
%T On small random perturbations of dynamical systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1970
%P 1-55
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/
%G en
%F RM_1970_25_1_a0
A. D. Venttsel'; M. I. Freidlin. On small random perturbations of dynamical systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 1, pp. 1-55. http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/