On small random perturbations of dynamical systems
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 1, pp. 1-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we study the effect on a dynamical system $\dot x_t=b(x_t)$ of small random perturbations of the type of white noise: 
$$
\dot x_t^\varepsilon=b^\varepsilon(x_t^\varepsilon)
+\varepsilon \sigma (x_t^\varepsilon)\bar\xi_t,
$$
where $\xi_t$ is the $r$-dimensional Wiener process and $b^\varepsilon(x)\to b(x)$ as $\varepsilon\to 0$. We are mainly concerned with the effect of these perturbations on long time-intervals that increase with the decreasing $\varepsilon$. We discuss two problems: the first is the behaviour of the invariant measure $\mu^\varepsilon$ of the process $x_t^\varepsilon$ as $\varepsilon\to 0$, and the second is the distribution of the position of a trajectory at the first time of its exit from a compact domain. An important role is played in these problems by an estimate of the probability for a trajectory of $x_t^\varepsilon$ not to deviate from a smooth function $\varphi_t$ by more than $\delta$ during the time $[0, T]$. It turns out that the main term of this probability for sma $\varepsilon$ and $\delta$ has the form
$\exp\bigl\{-\frac{1}{2\varepsilon^2}I(\varphi)\bigr\}$ where $I(\varphi)$, 
is a certain non-negative functional of $\varphi_t$.
A function $V(x,y)$, the minimum o $I(\varphi)$ over the set of all functions  connecting $x$ and $y$, is involved in the answers to both the problems.
By means of $V(x,y)$ we introduce an independent of perturbations relation of equivalence in the phase-space. We show, under certain assumption, at what point of the phase-space the invariant measure concentrates in the limit.
In both the problems we approximate the process in question by a certain Markov chain; the answers depend on the behaviour of $V(x,y)$ on graphs that are associated with this chain.
Let us remark that the second problem is closely related to the behaviour of the solution of a Dirichlet problem with a small parameter at the highest derivatives.
			
            
            
            
          
        
      @article{RM_1970_25_1_a0,
     author = {A. D. Venttsel' and M. I. Freidlin},
     title = {On small random perturbations of dynamical systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--55},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. D. Venttsel' AU - M. I. Freidlin TI - On small random perturbations of dynamical systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1970 SP - 1 EP - 55 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/ LA - en ID - RM_1970_25_1_a0 ER -
A. D. Venttsel'; M. I. Freidlin. On small random perturbations of dynamical systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 25 (1970) no. 1, pp. 1-55. http://geodesic.mathdoc.fr/item/RM_1970_25_1_a0/
