Best linear approximations of functions analytically continuable from a~given continuum into a~given region
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 1, pp. 93-135
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a continuum (other than a single point) in the $z$-plane not disconnecting the plane, $\mathfrak{G}$ a simply-connected domain containing $K$. The class
$A_K^{\mathfrak{G}}$ consists of those functions that are analytic in $\mathfrak{G}$ and satisfy the inequality
$$
|f(z)|\leqslant 1,\quad\mathbf\forall_z\in\mathfrak{G}.
$$
The author proves the following theorem:
$$
H_\varepsilon(A_K^\mathfrak{G})\sim\tau\log_2^2\frac{1}{\varepsilon},\qquad\lim_{n\to\infty}d_n(A_K^\mathfrak{G})]^{\frac{1}{n}}=2^{-\frac{1}{\tau}}.
$$
Here $H_\varepsilon$ is the $\varepsilon$-etropy of $A_K^{\mathfrak{G}}$, and $d_n$ the
$n$-dimensional linear diameter of $ A_K^{\mathfrak{G}}$ in the space $ C(K)$ of all functions continuous on $K$. The norm on $ A_K^{\mathfrak{G}}$ is
$$
||f(z)||=\max_{z\in K}|f(z)|.
$$
For the proof a basis is constructed in the space $\mathscr H(\mathfrak{G})$ of functions holomorphic in $\mathfrak{G}$; it coincides with the Faber basis if $\partial\mathfrak{G}$ is a level curve of $K$. A fundamental part in this construction is played by a lemma which states that the domain $\mathfrak{G}\setminus K$ can be mapped conformally into a domain
$\mathfrak{G}'\setminus K'$, where $\partial\mathfrak{G}'$ is a level curve of $K'$.
In the appendix, which is written by A. L. Levin and V. M. Tikhomirov, a similar theorem is proved (under additional assumptions) for the case when $\mathfrak{G}$ is multiply-connected and $K$ may consist of several continua.
@article{RM_1968_23_1_a2,
author = {V. D. Erokhin},
title = {Best linear approximations of functions analytically continuable from a~given continuum into a~given region},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {93--135},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1968},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/}
}
TY - JOUR AU - V. D. Erokhin TI - Best linear approximations of functions analytically continuable from a~given continuum into a~given region JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1968 SP - 93 EP - 135 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/ LA - en ID - RM_1968_23_1_a2 ER -
%0 Journal Article %A V. D. Erokhin %T Best linear approximations of functions analytically continuable from a~given continuum into a~given region %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1968 %P 93-135 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/ %G en %F RM_1968_23_1_a2
V. D. Erokhin. Best linear approximations of functions analytically continuable from a~given continuum into a~given region. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 1, pp. 93-135. http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/