Best linear approximations of functions analytically continuable from a~given continuum into a~given region
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 1, pp. 93-135

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a continuum (other than a single point) in the $z$-plane not disconnecting the plane, $\mathfrak{G}$ a simply-connected domain containing $K$. The class $A_K^{\mathfrak{G}}$ consists of those functions that are analytic in $\mathfrak{G}$ and satisfy the inequality $$ |f(z)|\leqslant 1,\quad\mathbf\forall_z\in\mathfrak{G}. $$ The author proves the following theorem: $$ H_\varepsilon(A_K^\mathfrak{G})\sim\tau\log_2^2\frac{1}{\varepsilon},\qquad\lim_{n\to\infty}d_n(A_K^\mathfrak{G})]^{\frac{1}{n}}=2^{-\frac{1}{\tau}}. $$ Here $H_\varepsilon$ is the $\varepsilon$-etropy of $A_K^{\mathfrak{G}}$, and $d_n$ the $n$-dimensional linear diameter of $ A_K^{\mathfrak{G}}$ in the space $ C(K)$ of all functions continuous on $K$. The norm on $ A_K^{\mathfrak{G}}$ is $$ ||f(z)||=\max_{z\in K}|f(z)|. $$ For the proof a basis is constructed in the space $\mathscr H(\mathfrak{G})$ of functions holomorphic in $\mathfrak{G}$; it coincides with the Faber basis if $\partial\mathfrak{G}$ is a level curve of $K$. A fundamental part in this construction is played by a lemma which states that the domain $\mathfrak{G}\setminus K$ can be mapped conformally into a domain $\mathfrak{G}'\setminus K'$, where $\partial\mathfrak{G}'$ is a level curve of $K'$. In the appendix, which is written by A. L. Levin and V. M. Tikhomirov, a similar theorem is proved (under additional assumptions) for the case when $\mathfrak{G}$ is multiply-connected and $K$ may consist of several continua.
@article{RM_1968_23_1_a2,
     author = {V. D. Erokhin},
     title = {Best linear approximations of functions analytically continuable from a~given continuum into a~given region},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {93--135},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1968},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/}
}
TY  - JOUR
AU  - V. D. Erokhin
TI  - Best linear approximations of functions analytically continuable from a~given continuum into a~given region
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1968
SP  - 93
EP  - 135
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/
LA  - en
ID  - RM_1968_23_1_a2
ER  - 
%0 Journal Article
%A V. D. Erokhin
%T Best linear approximations of functions analytically continuable from a~given continuum into a~given region
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1968
%P 93-135
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/
%G en
%F RM_1968_23_1_a2
V. D. Erokhin. Best linear approximations of functions analytically continuable from a~given continuum into a~given region. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 23 (1968) no. 1, pp. 93-135. http://geodesic.mathdoc.fr/item/RM_1968_23_1_a2/