O vyjádřitelnosti kombinačních čísel
Rozhledy matematicko-fyzikální, Tome 88 (2013) no. 3, pp. 2-8
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The article deals with the identity $$\sum_{i=0}^{n-k}\binom{n-p-1-i}{k-p-1}\cdot\binom{p+i}p = \binom nk$$, where $k, n, p$ are nonnegative integers meeting the condition $p k \leq n$. The validity of the identity is discussed and the idea of its proof is outlined.
The article deals with the identity $$\sum_{i=0}^{n-k}\binom{n-p-1-i}{k-p-1}\cdot\binom{p+i}p = \binom nk$$, where $k, n, p$ are nonnegative integers meeting the condition $p k \leq n$. The validity of the identity is discussed and the idea of its proof is outlined.
@article{RMF_2013_88_3_a1,
author = {Mal\'y, Martin},
title = {O vyj\'ad\v{r}itelnosti kombina\v{c}n{\'\i}ch \v{c}{\'\i}sel},
journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
pages = {2--8},
year = {2013},
volume = {88},
number = {3},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/RMF_2013_88_3_a1/}
}
Malý, Martin. O vyjádřitelnosti kombinačních čísel. Rozhledy matematicko-fyzikální, Tome 88 (2013) no. 3, pp. 2-8. http://geodesic.mathdoc.fr/item/RMF_2013_88_3_a1/