Číslo e v tvare nekonečného súčinu
Rozhledy matematicko-fyzikální, Tome 85 (2010) no. 2, pp. 10-12
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The article describes a method of defining the Euler’s number e by an infinite product. The limit representing the infinite product is determined by a definite integral. An approximation of the numerical value of e is given by a product of a finite number of factors.
@article{RMF_2010__85_2_a2,
author = {Stre\v{c}ko, Vladim{\'\i}r},
title = {\v{C}{\'\i}slo e v tvare nekone\v{c}n\'eho s\'u\v{c}inu},
journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
pages = {10--12},
publisher = {mathdoc},
volume = {85},
number = {2},
year = {2010},
language = {sl},
url = {http://geodesic.mathdoc.fr/item/RMF_2010__85_2_a2/}
}
Strečko, Vladimír. Číslo e v tvare nekonečného súčinu. Rozhledy matematicko-fyzikální, Tome 85 (2010) no. 2, pp. 10-12. http://geodesic.mathdoc.fr/item/RMF_2010__85_2_a2/