Lineární funkce a rekurentně zadané posloupnosti
Rozhledy matematicko-fyzikální, Tome 84 (2009) no. 1, pp. 6-12
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper demonstrates a way how to find a formula for the nth term of a sequence that is given recursively. We concentrate only on a special case when the sequence is given by a linear recurrence relations of the first order with constant coefficients. There are given two applications of the derived formula at the end of the paper. Particularly we formulate and solve a problem of mortgage of loans and a problem of Towers of Benares which is also known as a problem of Towers of Hanoi.
@article{RMF_2009__84_1_a2,
author = {Pra\v{z}\'ak, Pavel},
title = {Line\'arn{\'\i} funkce a rekurentn\v{e} zadan\'e posloupnosti},
journal = {Rozhledy matematicko-fyzik\'aln{\'\i}},
pages = {6--12},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2009},
language = {cz},
url = {http://geodesic.mathdoc.fr/item/RMF_2009__84_1_a2/}
}
Pražák, Pavel. Lineární funkce a rekurentně zadané posloupnosti. Rozhledy matematicko-fyzikální, Tome 84 (2009) no. 1, pp. 6-12. http://geodesic.mathdoc.fr/item/RMF_2009__84_1_a2/