Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation $\partial_{t} u = \triangle u + \frac{c}{|x^{2}|} u \big( 0 c \frac{(n-2)^{2}}{4}; \, n \ge 3 \big)$. A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator $Hu = - \triangle u - \frac{c}{|x|^{2}} u$ with the opposite of the weighted Laplacian $\triangle_{\lambda} v = \frac{1}{|x|^{\lambda}} \text{div} (|x|^{\lambda} \nabla v)$ when $\lambda = 2 - n + 2 \sqrt{c_{0} - c}$.
@article{RLIN_2005_9_16_3_a2,
author = {Moschini, Luisa and Tesei, Alberto},
title = {Harnack inequality and heat kernel estimates for the {Schr\"odinger} operator with {Hardy} potential},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {171--180},
publisher = {mathdoc},
volume = {Ser. 9, 16},
number = {3},
year = {2005},
zbl = {1225.35112},
mrnumber = {MR2227741},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/}
}
TY - JOUR AU - Moschini, Luisa AU - Tesei, Alberto TI - Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 171 EP - 180 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/ LA - en ID - RLIN_2005_9_16_3_a2 ER -
%0 Journal Article %A Moschini, Luisa %A Tesei, Alberto %T Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 171-180 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/ %G en %F RLIN_2005_9_16_3_a2
Moschini, Luisa; Tesei, Alberto. Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/