Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation $\partial_{t} u = \triangle u + \frac{c}{|x^{2}|} u \big( 0 c \frac{(n-2)^{2}}{4}; \, n \ge 3 \big)$. A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator $Hu = - \triangle u - \frac{c}{|x|^{2}} u$ with the opposite of the weighted Laplacian $\triangle_{\lambda} v = \frac{1}{|x|^{\lambda}} \text{div} (|x|^{\lambda} \nabla v)$ when $\lambda = 2 - n + 2 \sqrt{c_{0} - c}$.
In questa Nota preliminare si presentano alcuni risultati del successivo lavoro [11], riguardanti soluzioni positive dell'equazione $\partial_{t} u = \triangle u + \frac{c}{|x^{2}|} u \big( 0 c \frac{(n-2)^{2}}{4}; \, n \ge 3 \big)$. Si dimostra una disuguaglianza di Harnack parabolica, che in particolare implica una stima bilatera sul nucleo del calore associato. Il nostro approccio si basa sull'equivalenza unitaria dell'operatore di Schrödinger $Hu = - \triangle u - \frac{c}{|x|^{2}} u$ con l'opposto dell'operatore di Laplace pesato $\triangle_{\lambda} v = \frac{1}{|x|^{\lambda}} \text{div} (|x|^{\lambda} \nabla v)$ quando $\lambda = 2 - n + 2 \sqrt{c_{0} - c}$.
@article{RLIN_2005_9_16_3_a2,
     author = {Moschini, Luisa and Tesei, Alberto},
     title = {Harnack inequality and heat kernel estimates for the {Schr\"odinger} operator with {Hardy} potential},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {3},
     year = {2005},
     zbl = {1225.35112},
     mrnumber = {2034290},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/}
}
TY  - JOUR
AU  - Moschini, Luisa
AU  - Tesei, Alberto
TI  - Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 171
EP  - 180
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/
LA  - en
ID  - RLIN_2005_9_16_3_a2
ER  - 
%0 Journal Article
%A Moschini, Luisa
%A Tesei, Alberto
%T Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 171-180
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/
%G en
%F RLIN_2005_9_16_3_a2
Moschini, Luisa; Tesei, Alberto. Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/

[1] G. Barbatis - S. Filippas - A. Tertikas, Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal., 208, 2004, 1-30. | fulltext mini-dml | DOI | MR | Zbl

[2] H. Brezis - L. Dupaigne - A. Tesei, On a semilinear elliptic equation with inverse-square potential. Selecta Math., 11, 2005, 1-7. | fulltext mini-dml | DOI | MR | Zbl

[3] F.M. Chiarenza - R.P. Serapioni, A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova, 73, 1985, 179-190. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[4] E.B. Davies, Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989. | DOI | MR | Zbl

[5] E.D. Fabes - D.W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal., 96, 1986, 327-338. | DOI | MR | Zbl

[6] A. Grigoryan, The heat equation on non-compact Riemannian manifolds. Mat. Sb., 182, 1991, 55-87 (in Russian); Engl. transl.: Math. USSR Sb., 72, 1992, 47-77. | MR

[7] A. Grigoryan, Heat kernels on weighted manifolds and applications. Cont. Math., to appear; http:// www.ma.ic.ac.uk/~grigor/wma.pdf | DOI | MR | Zbl

[8] A. Grigoryan - L. Saloff-Coste, Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble), 55, 2005, to appear; http://www.ma.ic.ac.uk/~grigor/vc1eps.pdf | fulltext EuDML | fulltext mini-dml | MR | Zbl

[9] P.D. Milman - Y.A. Semenov, Heat kernel bounds and desingularizing weights. J. Funct. Anal., 202, 2003, 1-24. | DOI | MR | Zbl

[10] P.D. Milman - Y.A. Semenov, Global heat kernel bounds via desingularizing weights. J. Funct. Anal., 212, 2004, 373-398. | DOI | MR | Zbl

[11] L. Moschini - A. Tesei, Parabolic Harnack Inequality for the Heat Equation with Inverse-Square Potential. Forum Math., to appear. | DOI | MR | Zbl

[12] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notes, 2, 1992, 27-38. | DOI | MR | Zbl

[13] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal., 4, 1995, 429-467. | DOI | MR | Zbl

[14] L. Saloff-Coste, Aspects of Sobolev-Type Inequalities. London Math. Soc. Lecture Notes, 289, Cambridge University Press, 2002. | MR | Zbl