Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation $\partial_{t} u = \triangle u + \frac{c}{|x^{2}|} u \big( 0 c \frac{(n-2)^{2}}{4}; \, n \ge 3 \big)$. A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator $Hu = - \triangle u - \frac{c}{|x|^{2}} u$ with the opposite of the weighted Laplacian $\triangle_{\lambda} v = \frac{1}{|x|^{\lambda}} \text{div} (|x|^{\lambda} \nabla v)$ when $\lambda = 2 - n + 2 \sqrt{c_{0} - c}$.
@article{RLIN_2005_9_16_3_a2,
     author = {Moschini, Luisa and Tesei, Alberto},
     title = {Harnack inequality and heat kernel estimates for the {Schr\"odinger} operator with {Hardy} potential},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {3},
     year = {2005},
     zbl = {1225.35112},
     mrnumber = {MR2227741},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/}
}
TY  - JOUR
AU  - Moschini, Luisa
AU  - Tesei, Alberto
TI  - Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 171
EP  - 180
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/
LA  - en
ID  - RLIN_2005_9_16_3_a2
ER  - 
%0 Journal Article
%A Moschini, Luisa
%A Tesei, Alberto
%T Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 171-180
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/
%G en
%F RLIN_2005_9_16_3_a2
Moschini, Luisa; Tesei, Alberto. Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/