Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2005_9_16_3_a2, author = {Moschini, Luisa and Tesei, Alberto}, title = {Harnack inequality and heat kernel estimates for the {Schr\"odinger} operator with {Hardy} potential}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {171--180}, publisher = {mathdoc}, volume = {Ser. 9, 16}, number = {3}, year = {2005}, zbl = {1225.35112}, mrnumber = {2034290}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/} }
TY - JOUR AU - Moschini, Luisa AU - Tesei, Alberto TI - Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 171 EP - 180 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/ LA - en ID - RLIN_2005_9_16_3_a2 ER -
%0 Journal Article %A Moschini, Luisa %A Tesei, Alberto %T Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 171-180 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/ %G en %F RLIN_2005_9_16_3_a2
Moschini, Luisa; Tesei, Alberto. Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 3, pp. 171-180. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_3_a2/
[1] Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal., 208, 2004, 1-30. | fulltext mini-dml | DOI | MR | Zbl
- - ,[2] On a semilinear elliptic equation with inverse-square potential. Selecta Math., 11, 2005, 1-7. | fulltext mini-dml | DOI | MR | Zbl
- - ,[3] A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova, 73, 1985, 179-190. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[4] Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989. | DOI | MR | Zbl
,[5] A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal., 96, 1986, 327-338. | DOI | MR | Zbl
- ,[6] The heat equation on non-compact Riemannian manifolds. Mat. Sb., 182, 1991, 55-87 (in Russian); Engl. transl.: Math. USSR Sb., 72, 1992, 47-77. | MR
,[7] Heat kernels on weighted manifolds and applications. Cont. Math., to appear; http:// www.ma.ic.ac.uk/~grigor/wma.pdf | DOI | MR | Zbl
,[8] Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble), 55, 2005, to appear; http://www.ma.ic.ac.uk/~grigor/vc1eps.pdf | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[9] Heat kernel bounds and desingularizing weights. J. Funct. Anal., 202, 2003, 1-24. | DOI | MR | Zbl
- ,[10] Global heat kernel bounds via desingularizing weights. J. Funct. Anal., 212, 2004, 373-398. | DOI | MR | Zbl
- ,[11] Parabolic Harnack Inequality for the Heat Equation with Inverse-Square Potential. Forum Math., to appear. | DOI | MR | Zbl
- ,[12] A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notes, 2, 1992, 27-38. | DOI | MR | Zbl
,[13] Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal., 4, 1995, 429-467. | DOI | MR | Zbl
,[14] Aspects of Sobolev-Type Inequalities. London Math. Soc. Lecture Notes, 289, Cambridge University Press, 2002. | MR | Zbl
,