Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2005_9_16_2_a5, author = {Lucia, Marcello}, title = {On the uniqueness and simplicity of the principal eigenvalue}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {133--142}, publisher = {mathdoc}, volume = {Ser. 9, 16}, number = {2}, year = {2005}, zbl = {1225.35159}, mrnumber = {1098396}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a5/} }
TY - JOUR AU - Lucia, Marcello TI - On the uniqueness and simplicity of the principal eigenvalue JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 133 EP - 142 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a5/ LA - en ID - RLIN_2005_9_16_2_a5 ER -
%0 Journal Article %A Lucia, Marcello %T On the uniqueness and simplicity of the principal eigenvalue %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 133-142 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a5/ %G en %F RLIN_2005_9_16_2_a5
Lucia, Marcello. On the uniqueness and simplicity of the principal eigenvalue. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 133-142. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a5/
[1] Principal eigenvalues for indefinite-weight elliptic problems on $\mathbb{R}^{N}$. Proc. Am. Math. Monthly, 116, 1992, 701-706. | DOI | MR | Zbl
,[2] Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique. Comm. PDE, 4, 1979, 321-337. | DOI | MR | Zbl
,[3] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. math., 47, 1994, 47-92. | DOI | MR | Zbl
- - ,[4] Remarks on the strong maximum principle. Differential Integral Equations, 16, 2003, 1-12. | MR | Zbl
- ,[5] Principal eigenvalues for problems with indefinite weight function on $\mathbb{R}^{N}$. Proc. Amer. Math. Soc., 109, 1990, 147-155. | DOI | MR | Zbl
- - ,[6] Global Bifurcation results for a semilinear elliptic equation on all of $\mathbb{R}^{N}$. Duke Math. J., 85, 1996, 77-94. | fulltext mini-dml | DOI | MR | Zbl
- ,[7] Eigenvalue problems for the $p$-Laplacian with indefinite weights. Electron. J. Differential Equations, 33, 2001, 1-9. | fulltext EuDML | MR | Zbl
,[8] Positive solutions of semilinear elliptic problems, Differential equations. Lecture Notes in Math., 957, Springer-Verlag, Berlin 1982, 34-87. | MR | Zbl
,[9] Measure Theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992. | MR | Zbl
- ,[10] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin 1983. | MR | Zbl
- ,[11] On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. PDE, 5, 1980, 999-1030. | DOI | MR | Zbl
- ,[12] A Dirichlet problem with asymptotically linear and changing sign nonlinearity. Rev. Mat. Comput., 16, 2003, 465-481. | fulltext EuDML | MR | Zbl
- - ,[13] Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Bollettino U.M.I., 7, 1973, 285-301. | MR | Zbl
- ,[14] Équations elliptiques du second ordre à coefficients discontinus. Les Presses de l'Université de Montréal, Montréal 1966. | fulltext mini-dml | MR | Zbl
,[15] Eigenvalue problems with indefinite weight. Studia Math., 135, 1999, 191-201. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[16] Uniqueness and nonuniqueness of positive solutions for a semilinear elliptic equation in $\mathbb{R}^{N}$. Diff. and Int. Eqns., 8, 1995, 829-848. | MR | Zbl
,[17] An application of a mountain pass theorem. Acta Math. Sinica (N.S.), 18, 2002, 27-36. | DOI | MR | Zbl
,