Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2005_9_16_2_a0, author = {Giamb\`o, Roberto and Giannoni, Fabio and Piccione, Paolo}, title = {On the multiplicity of brake orbits and homoclinics in {Riemannian} manifolds}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {73--85}, publisher = {mathdoc}, volume = {Ser. 9, 16}, number = {2}, year = {2005}, zbl = {1225.37069}, mrnumber = {1229052}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/} }
TY - JOUR AU - Giambò, Roberto AU - Giannoni, Fabio AU - Piccione, Paolo TI - On the multiplicity of brake orbits and homoclinics in Riemannian manifolds JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 73 EP - 85 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/ LA - en ID - RLIN_2005_9_16_2_a0 ER -
%0 Journal Article %A Giambò, Roberto %A Giannoni, Fabio %A Piccione, Paolo %T On the multiplicity of brake orbits and homoclinics in Riemannian manifolds %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 73-85 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/ %G en %F RLIN_2005_9_16_2_a0
Giambò, Roberto; Giannoni, Fabio; Piccione, Paolo. On the multiplicity of brake orbits and homoclinics in Riemannian manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 73-85. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/
[1] Multiple Homoclinic Orbits for a Class of Conservative Systems. Rend. Sem. Mat. Univ. Padova, vol. 89, 1993, 177-194. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[2] Kritische Sehenen auf Riemannischen Elementarraumstücken. Math. Ann., 151, 1963, 431-451. | fulltext EuDML | MR | Zbl
,[3] Homoclinic Orbits for second Order Hamiltonian Systems Possessing Superquadratic Potentials. J. Amer. Math. Soc., 4, 1991, 693-727. | DOI | MR | Zbl
- ,[4] Riemannian Geometry. Birkhäuser, Boston 1992. | MR | Zbl
,[5] Orthogonal Geodesic Chords, Brake Orbits and Homoclinic Orbits in Riemannian Manifolds. Preprint 2004. | fulltext mini-dml | Zbl
- - ,[6] Multiple brake orbits and homoclinics in Riemannian manifolds. Preprint 2004. | Zbl
- - ,[7] On the effect of the domain on the number of orthogonal geodesic chords. Diff. Geom. Appl., 7, 1997, 341-364. | DOI | MR | Zbl
- ,[8] On the Multiplicity of Homoclinic Orbits on Riemannian Manifolds for a Class of Second Order Hamiltonian Systems. No.D.E.A., 1, 1994, 1-46. | DOI | MR | Zbl
- ,[9] Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^{2n}$. Ann. of Math., (2), 155, 2002, no. 2, 317-368. | fulltext mini-dml | DOI | MR | Zbl
- ,[10] Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbb{R}^{2n}$. Math. Ann., 323, 2002, 201-215. | fulltext mini-dml | DOI | MR | Zbl
- - ,[11] Méthodes Topologiques dans les Problèmes Variationelles. Hermann, Paris 1934. | Jbk 56.1134.02 | Zbl
- ,[12] Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York-Berlin 1988. | Zbl
- ,[13] Multiple homoclinic orbits for a class of Hamiltonian systems. Calc. Var. PDE, 12, 2001, 117-143. | DOI | MR | Zbl
,[14] Periodic and Eteroclinic Orbits for a Periodic Hamiltonian System. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 6, 1989, 331-346. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[15] Existence of Infinitely Many Homoclinic Orbits in Hamiltonian Systems. Math. Z., 209, 1992, 27-42. | fulltext EuDML | DOI | MR | Zbl
,[16] Looking for the Bernoulli Shift. Ann. Inst. H. Poincaré, Analyse Non Linéaire, 10, 1993, 561-590. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[17] Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 3rd edition, Springer-Verlag, Berlin 2000. | MR | Zbl
,[18] A Note on the Existence of Multiple Homoclinic Orbits for a Perturbed Radial Potential. No.D.E.A., 1, 1994, 149-162. | DOI | MR | Zbl
,