On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 73-85

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $(M,g)$ be a complete Riemannian manifold, $\Omega \subset M$ an open subset whose closure is diffeomorphic to an annulus. If $\partial \Omega$ is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in $\overline{\Omega} = \Omega \bigcup \partial \Omega$ starting orthogonally to one connected component of $\partial \Omega$ and arriving orthogonally onto the other one. The results given in [5] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct for a class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least $\text{dim}(M)$ pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
@article{RLIN_2005_9_16_2_a0,
     author = {Giamb\`o, Roberto and Giannoni, Fabio and Piccione, Paolo},
     title = {On the multiplicity of brake orbits and homoclinics in {Riemannian} manifolds},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {2},
     year = {2005},
     zbl = {1225.37069},
     mrnumber = {MR2225502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/}
}
TY  - JOUR
AU  - Giambò, Roberto
AU  - Giannoni, Fabio
AU  - Piccione, Paolo
TI  - On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 73
EP  - 85
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/
LA  - en
ID  - RLIN_2005_9_16_2_a0
ER  - 
%0 Journal Article
%A Giambò, Roberto
%A Giannoni, Fabio
%A Piccione, Paolo
%T On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 73-85
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/
%G en
%F RLIN_2005_9_16_2_a0
Giambò, Roberto; Giannoni, Fabio; Piccione, Paolo. On the multiplicity of brake orbits and homoclinics in Riemannian manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 73-85. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/