On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 73-85
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $(M,g)$ be a complete Riemannian manifold, $\Omega \subset M$ an open subset whose closure is diffeomorphic to an annulus. If $\partial \Omega$ is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in $\overline{\Omega} = \Omega \bigcup \partial \Omega$ starting orthogonally to one connected component of $\partial \Omega$ and arriving orthogonally onto the other one. The results given in [5] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct for a class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least $\text{dim}(M)$ pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
@article{RLIN_2005_9_16_2_a0,
author = {Giamb\`o, Roberto and Giannoni, Fabio and Piccione, Paolo},
title = {On the multiplicity of brake orbits and homoclinics in {Riemannian} manifolds},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {73--85},
publisher = {mathdoc},
volume = {Ser. 9, 16},
number = {2},
year = {2005},
zbl = {1225.37069},
mrnumber = {MR2225502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/}
}
TY - JOUR AU - Giambò, Roberto AU - Giannoni, Fabio AU - Piccione, Paolo TI - On the multiplicity of brake orbits and homoclinics in Riemannian manifolds JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2005 SP - 73 EP - 85 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/ LA - en ID - RLIN_2005_9_16_2_a0 ER -
%0 Journal Article %A Giambò, Roberto %A Giannoni, Fabio %A Piccione, Paolo %T On the multiplicity of brake orbits and homoclinics in Riemannian manifolds %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2005 %P 73-85 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/ %G en %F RLIN_2005_9_16_2_a0
Giambò, Roberto; Giannoni, Fabio; Piccione, Paolo. On the multiplicity of brake orbits and homoclinics in Riemannian manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 2, pp. 73-85. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_2_a0/