Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 5-9.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a bounded domain $D$ of $\mathbb{C}^{n}$, we introduce a notion of «$q$-pseudoconvexity» of new type and prove that for a given $\overline{\partial}$-closed $(p,r)$-form $f$ that is smooth up to the boundary on $D$, and for $r \ge q$, there exists a $(p,r-1)$-form $u$ smooth up to the boundary on $D$ which is a solution of the equation $\overline{\partial} u = f$
Si introduce una nuova nozione di «$q$-pseudoconvessità» per un dominio $D$ di $\mathbb{C}^{n}$. Per un tale $D$, e per ogni forma $\overline{\partial}$-chiusa $f$ di tipo $(p,r)$ con $r \ge q$, che è $C^{\infty}$ fino al bordo di $D$, si prova che esiste una forma $u$ anch'essa $C^{\infty}$ in $\overline{D}$ che risolve l'equazione $\overline{\partial} u = f$
@article{RLIN_2005_9_16_1_a0,
     author = {Ahn, Heungju},
     title = {Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {1},
     year = {2005},
     zbl = {1225.35157},
     mrnumber = {1800297},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/}
}
TY  - JOUR
AU  - Ahn, Heungju
TI  - Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 5
EP  - 9
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/
LA  - en
ID  - RLIN_2005_9_16_1_a0
ER  - 
%0 Journal Article
%A Ahn, Heungju
%T Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 5-9
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/
%G en
%F RLIN_2005_9_16_1_a0
Ahn, Heungju. Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 5-9. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/

[1] S.-C. Chen - M.-C. Shaw, Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI 2001. MR 2001m:32071 | MR | Zbl

[2] L.-H. Ho, $\overline{\partial}$-problem on weakly $q$-convex domains. Math. Ann., 290, no. 1, 1991, 3-18. MR 92j:32052 | fulltext EuDML | DOI | MR | Zbl

[3] J.J. Kohn, Global regularity for $\overline{\partial}$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc., 181, 1973, 273-292. MR 49 \#9442 | MR | Zbl

[4] J.J. Kohn, Methods of partial differential equations in complex analysis. Amer. Math. Soc. Proc. Sympos. Pure Math., XXX, Part. 1, Providence, RI 1977, 215-237. | MR | Zbl

[5] V. Michel, Sur la régularité $C^{\infty}$ du $\overline{\partial}$ au bord d'un domaine de $\mathbb{C}^{n}$ dont la forme de Levi a exactement $s$ valeurs propres strictement négatives. Math. Ann., 295, 1993, no. 1, 135-161. MR 93k:32030 | fulltext EuDML | DOI | MR | Zbl

[6] G. Zampieri, $q$-pseudoconvexity and regularity at the boundary for solutions of the $\overline{\partial}$-problem. Compositio Math., 121, 2000, no. 2, 155-162. MR 2001a:32048 | DOI | MR | Zbl