Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 5-9
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
For a bounded domain $D$ of $\mathbb{C}^{n}$, we introduce a notion of «$q$-pseudoconvexity» of new type and prove that for a given $\overline{\partial}$-closed $(p,r)$-form $f$ that is smooth up to the boundary on $D$, and for $r \ge q$, there exists a $(p,r-1)$-form $u$ smooth up to the boundary on $D$ which is a solution of the equation $\overline{\partial} u = f$
@article{RLIN_2005_9_16_1_a0,
author = {Ahn, Heungju},
title = {Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {5--9},
year = {2005},
volume = {Ser. 9, 16},
number = {1},
zbl = {1225.35157},
mrnumber = {MR2225919},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/}
}
TY - JOUR
AU - Ahn, Heungju
TI - Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY - 2005
SP - 5
EP - 9
VL - 16
IS - 1
UR - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/
LA - en
ID - RLIN_2005_9_16_1_a0
ER -
%0 Journal Article
%A Ahn, Heungju
%T Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 5-9
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/
%G en
%F RLIN_2005_9_16_1_a0
Ahn, Heungju. Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 5-9. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/