Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 5-9

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For a bounded domain $D$ of $\mathbb{C}^{n}$, we introduce a notion of «$q$-pseudoconvexity» of new type and prove that for a given $\overline{\partial}$-closed $(p,r)$-form $f$ that is smooth up to the boundary on $D$, and for $r \ge q$, there exists a $(p,r-1)$-form $u$ smooth up to the boundary on $D$ which is a solution of the equation $\overline{\partial} u = f$
@article{RLIN_2005_9_16_1_a0,
     author = {Ahn, Heungju},
     title = {Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {Ser. 9, 16},
     number = {1},
     year = {2005},
     zbl = {1225.35157},
     mrnumber = {MR2225919},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/}
}
TY  - JOUR
AU  - Ahn, Heungju
TI  - Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2005
SP  - 5
EP  - 9
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/
LA  - en
ID  - RLIN_2005_9_16_1_a0
ER  - 
%0 Journal Article
%A Ahn, Heungju
%T Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2005
%P 5-9
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/
%G en
%F RLIN_2005_9_16_1_a0
Ahn, Heungju. Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 16 (2005) no. 1, pp. 5-9. http://geodesic.mathdoc.fr/item/RLIN_2005_9_16_1_a0/