Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_3-4_a7, author = {Hsiao, Ling}, title = {The quasineutral limit problem in semiconductors sciences}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {249--256}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {3-4}, year = {2004}, zbl = {1105.35122}, mrnumber = {1786158}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/} }
TY - JOUR AU - Hsiao, Ling TI - The quasineutral limit problem in semiconductors sciences JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 249 EP - 256 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/ LA - en ID - RLIN_2004_9_15_3-4_a7 ER -
%0 Journal Article %A Hsiao, Ling %T The quasineutral limit problem in semiconductors sciences %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 249-256 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/ %G en %F RLIN_2004_9_15_3-4_a7
Hsiao, Ling. The quasineutral limit problem in semiconductors sciences. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 249-256. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/
[1] Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors. SIAM J. Math. Anal., 32(3), 2000, 572-587 (electronic). | DOI | MR | Zbl
- - ,[2] The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl., 8(3), 2001, 237-249. | DOI | MR | Zbl
,[3] Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors. J. Math. Anal. Appl., 268(1), 2002, 184-199. | DOI | MR | Zbl
- - - ,[4] The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. European J. Appl. Math., 12(4), 2001, 497-512. | DOI | MR | Zbl
- - - ,[5] The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 26, 2003, 1187-1210. | DOI | MR | Zbl
- - ,[6] The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. J. Diff. Eqns., 192, 2003, 111-133. | DOI | MR | Zbl
- - ,[7] Quasineutral limit of a standard drift diffusion model for semiconductors. Sci. China Ser. A, 45(1), 2002, 33-41. | MR | Zbl
- - ,[8] Quasineutral limit of a nonlinear drift diffusion model for semiconductors: the fast diffusion case. Advances in Math., vol. 32, no. 5, 2003, 615-622. | MR | Zbl
- ,[9] Quasineutral limit of a transient $p-n$ junction model for semiconductors. Preprint.
- ,[10] Asymptotic behaviour of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 25(8), 2002, 663-700. | DOI | MR | Zbl
- - ,[11] The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors. Math. Models Methods Appl. Sci., 10(9), 2000, 1333-1361. | DOI | MR | Zbl
- ,[12] Global existence and exponential stability of smooth solutions to a multidimensional nonisentropic Euler-Poisson equations. Acta Mathematica Sci., to appear. | MR | Zbl
- ,[13] A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal., 28(1), 2001, 49-73. | MR | Zbl
- ,[14] Semiconductor Equations. Springer-Verlag, Vienna 1990. | DOI | MR | Zbl
- - ,[15] An asymptotic analysis of a transient $p-n$-junction model. SIAM J. Appl. Math., 47(3), 1987, 624-642. | DOI | MR | Zbl
,[16] The transient behaviour of multidimensional $p-n$-diodes in low injection. Math. Methods Appl. Sci., 16(4), 1993, 265-279. | DOI | MR | Zbl
- ,[17] Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J., 29, 1950, 560-607.
,