The quasineutral limit problem in semiconductors sciences
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 249-256.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.
@article{RLIN_2004_9_15_3-4_a7,
     author = {Hsiao, Ling},
     title = {The quasineutral limit problem in semiconductors sciences},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {249--256},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1105.35122},
     mrnumber = {1786158},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/}
}
TY  - JOUR
AU  - Hsiao, Ling
TI  - The quasineutral limit problem in semiconductors sciences
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 249
EP  - 256
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/
LA  - en
ID  - RLIN_2004_9_15_3-4_a7
ER  - 
%0 Journal Article
%A Hsiao, Ling
%T The quasineutral limit problem in semiconductors sciences
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 249-256
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/
%G en
%F RLIN_2004_9_15_3-4_a7
Hsiao, Ling. The quasineutral limit problem in semiconductors sciences. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 249-256. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a7/

[1] G. Alì - D. Bini - S. Rionero, Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors. SIAM J. Math. Anal., 32(3), 2000, 572-587 (electronic). | DOI | MR | Zbl

[2] I. Gasser, The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl., 8(3), 2001, 237-249. | DOI | MR | Zbl

[3] I. Gasser - L. Hsiao - P.A. Markowich - S. Wang, Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors. J. Math. Anal. Appl., 268(1), 2002, 184-199. | DOI | MR | Zbl

[4] I. Gasser - C.D. Levermore - P.A. Markowich - C. Schmeiser, The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. European J. Appl. Math., 12(4), 2001, 497-512. | DOI | MR | Zbl

[5] L. Hsiao - Q. Ju - S. Wang, The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 26, 2003, 1187-1210. | DOI | MR | Zbl

[6] L. Hsiao - P. Markowich - S. Wang, The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. J. Diff. Eqns., 192, 2003, 111-133. | DOI | MR | Zbl

[7] L. Hsiao - P.A. Markowich - S. Wang, Quasineutral limit of a standard drift diffusion model for semiconductors. Sci. China Ser. A, 45(1), 2002, 33-41. | MR | Zbl

[8] L. Hsiao - S. Wang, Quasineutral limit of a nonlinear drift diffusion model for semiconductors: the fast diffusion case. Advances in Math., vol. 32, no. 5, 2003, 615-622. | MR | Zbl

[9] L. Hsiao - S. Wang, Quasineutral limit of a transient $p-n$ junction model for semiconductors. Preprint.

[10] L. Hsiao - S. Wang - H. Zhao, Asymptotic behaviour of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 25(8), 2002, 663-700. | DOI | MR | Zbl

[11] L. Hsiao - K. Zhang, The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors. Math. Models Methods Appl. Sci., 10(9), 2000, 1333-1361. | DOI | MR | Zbl

[12] Q. Ju - Y. Li, Global existence and exponential stability of smooth solutions to a multidimensional nonisentropic Euler-Poisson equations. Acta Mathematica Sci., to appear. | MR | Zbl

[13] A. Jüngel - Y.-J. Peng, A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal., 28(1), 2001, 49-73. | MR | Zbl

[14] P.A. Markowich - C.A. Ringhofer - C. Schmeiser, Semiconductor Equations. Springer-Verlag, Vienna 1990. | DOI | MR | Zbl

[15] C. Ringhofer, An asymptotic analysis of a transient $p-n$-junction model. SIAM J. Appl. Math., 47(3), 1987, 624-642. | DOI | MR | Zbl

[16] C. Schmeiser - A. Unterreiter, The transient behaviour of multidimensional $p-n$-diodes in low injection. Math. Methods Appl. Sci., 16(4), 1993, 265-279. | DOI | MR | Zbl

[17] W. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J., 29, 1950, 560-607.