The continuum reaction-diffusion limit of a stochastic cellular growth model
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 215-223.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered. The asymptotic behavior of the system can be partially described through the analysis of the stationary wave which connects different equilibria.
@article{RLIN_2004_9_15_3-4_a4,
     author = {Luckhaus, Stephan and Triolo, Livio},
     title = {The continuum reaction-diffusion limit of a stochastic cellular growth model},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {215--223},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.60346},
     mrnumber = {2091955},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/}
}
TY  - JOUR
AU  - Luckhaus, Stephan
AU  - Triolo, Livio
TI  - The continuum reaction-diffusion limit of a stochastic cellular growth model
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 215
EP  - 223
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/
LA  - en
ID  - RLIN_2004_9_15_3-4_a4
ER  - 
%0 Journal Article
%A Luckhaus, Stephan
%A Triolo, Livio
%T The continuum reaction-diffusion limit of a stochastic cellular growth model
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 215-223
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/
%G en
%F RLIN_2004_9_15_3-4_a4
Luckhaus, Stephan; Triolo, Livio. The continuum reaction-diffusion limit of a stochastic cellular growth model. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 215-223. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/

[1] M.F. Chen, From Markov Chains to Non-equilibrium Particle Systems. World Scientific, Singapore 1992. | DOI | MR | Zbl

[2] A. De Masi - E. Presutti, Mathematical methods for hydrodynamical limits. Lecture Notes in Mathematics, 1501, Springer-Verlag, Berlin-Heidelberg-New York 1991. | MR | Zbl

[3] S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\mathbb{R}^{4}$. Trans. Am. Math. Soc., 286, 1984, 557-594. | DOI | MR | Zbl

[4] R. Durrett - S. Levin, The importance of being discrete (and spatial). Theor. Population Biol., 46, 1994, 363-394. | Zbl

[5] R. Durrett - C. Neuhauser, Particle systems and reaction diffusion equations. Ann. Probab., 22, 1994, 289-333. | fulltext mini-dml | MR | Zbl

[6] P. Fife, Mathematical aspects of reacting and diffusing systems. Lectures Notes in Biomath., 28, Springer-Verlag, Berlin-Heidelberg-New York 1978. | MR | Zbl

[7] R.A. Gatenby - E.T. Gawlinski, A reaction-diffusion model of cancer invasion. Cancer Res., 56, 1996, 5745-5753.

[8] T. Gobron - E. Saada - L. Triolo, The competition-diffusion limit of a stochastic growth model. Math. and Comp. Modelling, 37, 2003, 1153-1161. | Zbl

[9] C.R. Kennedy - R. Aris, Traveling waves in a simple population model involving growth and death. Bull. Math. Biol., 42, 1980, 397-429. | DOI | MR | Zbl

[10] C. Kipnis - C. Landim, Scaling limits for interacting particle systems. Springer-Verlag, Berlin-Heidelberg-New York 1999. | MR | Zbl

[11] G.A. Klaasen - W.C. Troy, The stability of traveling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math., 41, 1981, 145-167. | DOI | MR | Zbl

[12] T.M. Liggett, Interacting Particle Systems. Springer-Verlag, Berlin-Heidelberg-New York 1985. | DOI | MR | Zbl

[13] B.P. Marchant - J. Norbury - A.J. Perumpanani, Traveling shock waves arising in a model of malignant invasion. SIAM J. Appl. Math., 60, 2000, 463-476. | DOI | MR | Zbl

[14] A. Perrut, Hydrodynamic limits for a two-species reaction-diffusion process. Annals of Appl. Probab., 10, 2000, 163-191. | fulltext mini-dml | DOI | MR | Zbl

[15] A.J. Perumpanani - J.A. Sherratt - J. Norbury - H.M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D, 126, 1999, 145-159. | Zbl