Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_3-4_a4, author = {Luckhaus, Stephan and Triolo, Livio}, title = {The continuum reaction-diffusion limit of a stochastic cellular growth model}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {215--223}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {3-4}, year = {2004}, zbl = {1162.60346}, mrnumber = {2091955}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/} }
TY - JOUR AU - Luckhaus, Stephan AU - Triolo, Livio TI - The continuum reaction-diffusion limit of a stochastic cellular growth model JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 215 EP - 223 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/ LA - en ID - RLIN_2004_9_15_3-4_a4 ER -
%0 Journal Article %A Luckhaus, Stephan %A Triolo, Livio %T The continuum reaction-diffusion limit of a stochastic cellular growth model %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 215-223 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/ %G en %F RLIN_2004_9_15_3-4_a4
Luckhaus, Stephan; Triolo, Livio. The continuum reaction-diffusion limit of a stochastic cellular growth model. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 215-223. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a4/
[1] From Markov Chains to Non-equilibrium Particle Systems. World Scientific, Singapore 1992. | DOI | MR | Zbl
,[2] Mathematical methods for hydrodynamical limits. Lecture Notes in Mathematics, 1501, Springer-Verlag, Berlin-Heidelberg-New York 1991. | MR | Zbl
- ,[3] Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $\mathbb{R}^{4}$. Trans. Am. Math. Soc., 286, 1984, 557-594. | DOI | MR | Zbl
,[4] The importance of being discrete (and spatial). Theor. Population Biol., 46, 1994, 363-394. | Zbl
- ,[5] Particle systems and reaction diffusion equations. Ann. Probab., 22, 1994, 289-333. | fulltext mini-dml | MR | Zbl
- ,[6] Mathematical aspects of reacting and diffusing systems. Lectures Notes in Biomath., 28, Springer-Verlag, Berlin-Heidelberg-New York 1978. | MR | Zbl
,[7] A reaction-diffusion model of cancer invasion. Cancer Res., 56, 1996, 5745-5753.
- ,[8] The competition-diffusion limit of a stochastic growth model. Math. and Comp. Modelling, 37, 2003, 1153-1161. | Zbl
- - ,[9] Traveling waves in a simple population model involving growth and death. Bull. Math. Biol., 42, 1980, 397-429. | DOI | MR | Zbl
- ,[10] Scaling limits for interacting particle systems. Springer-Verlag, Berlin-Heidelberg-New York 1999. | MR | Zbl
- ,[11] The stability of traveling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math., 41, 1981, 145-167. | DOI | MR | Zbl
- ,[12] Interacting Particle Systems. Springer-Verlag, Berlin-Heidelberg-New York 1985. | DOI | MR | Zbl
,[13] Traveling shock waves arising in a model of malignant invasion. SIAM J. Appl. Math., 60, 2000, 463-476. | DOI | MR | Zbl
- - ,[14] Hydrodynamic limits for a two-species reaction-diffusion process. Annals of Appl. Probab., 10, 2000, 163-191. | fulltext mini-dml | DOI | MR | Zbl
,[15] A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D, 126, 1999, 145-159. | Zbl
- - - ,