Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_3-4_a13, author = {Ambrosio, Luigi and Gigli, Nicola and Savar\'e, Giuseppe}, title = {Gradient flows with metric and differentiable structures, and applications to the {Wasserstein} space}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {327--343}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {3-4}, year = {2004}, zbl = {1162.35349}, mrnumber = {2703679}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/} }
TY - JOUR AU - Ambrosio, Luigi AU - Gigli, Nicola AU - Savaré, Giuseppe TI - Gradient flows with metric and differentiable structures, and applications to the Wasserstein space JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 327 EP - 343 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/ LA - en ID - RLIN_2004_9_15_3-4_a13 ER -
%0 Journal Article %A Ambrosio, Luigi %A Gigli, Nicola %A Savaré, Giuseppe %T Gradient flows with metric and differentiable structures, and applications to the Wasserstein space %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 327-343 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/ %G en %F RLIN_2004_9_15_3-4_a13
Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe. Gradient flows with metric and differentiable structures, and applications to the Wasserstein space. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 327-343. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/
[1] Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Arch. Rat. Mech. Anal., to appear (2002). | fulltext mini-dml | MR | Zbl
,[2] Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., (5), 19, 1995, 191-246. | MR | Zbl
,[3] Gradient flows in metric spaces and in the Wasserstein space of probability measures. Birkhäuser, 2004. | Zbl
- - ,[4] Selected topics on «analysis in metric spaces». Scuola Normale Superiore, Pisa 2000. | MR | Zbl
- ,[5] Discretization of evolution variational inequalities. In: F. COLOMBINI - A. MARINO - L. MODICA - S. SPAGNOLO (eds.), Partial differential equations and the calculus of variations. Vol. I, Birkhäuser, Boston, MA, 1989, 59-92. | MR | Zbl
,[6] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84, 2000, n. 3, 375-393. | DOI | MR | Zbl
- ,[7] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). MR 50 #1060 | MR | Zbl
,[8] Constrained steepest descent in the $2$-Wasserstein metric. Ann. Math., 157, 2003, n. 3, 807-846. | fulltext mini-dml | DOI | MR | Zbl
- ,[9] Contraction in the $2$-Wasserstein metric length space and thermalization of granular media. To appear. | Zbl
- - ,[10] New problems on minimizing movements. In: C. BAIOCCHI - J.-L. LIONS (eds.), Boundary Value Problems for PDE and Applications. Masson, Paris 1993, 81-98. | MR | Zbl
,[11] Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187. | MR | Zbl
- - ,[12] Measure transport on Wiener space and the Girsanov theorem. C.R. Math. Acad. Sci. Paris, 334, 2002, n. 11, 1025-1028. | DOI | MR | Zbl
- ,[13] The geometry of optimal transportation. Acta Math., 177, 1996, n. 2, 113-161. | DOI | MR | Zbl
- ,[14] Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181, 1998, n. 1, 1-61. | DOI | MR | Zbl
- ,[15] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29, 1998, n. 1, 1-17 (electronic). | DOI | MR | Zbl
- - ,[16] Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel 1997. | DOI | MR | Zbl
,[17] Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16(4), 1989, n. 2, 281-330. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[18] Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom., 6, 1998, n. 2, 199-253. | MR | Zbl
,[19] A convexity principle for interacting gases. Adv. Math., 128, 1997, n. 1, 153-179. | DOI | MR | Zbl
,[20] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53, 2000, n. 5, 525-589. MR 1 737 503 | DOI | MR | Zbl
- - ,[21] The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26, 2001, n. 1-2, 101-174. | DOI | MR | Zbl
,[22] Topics in optimal transportation. Graduate studies in mathematics, 58, AMS, Providence, RI, 2003. | DOI | MR | Zbl
,