Gradient flows with metric and differentiable structures, and applications to the Wasserstein space
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 327-343.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second part we study in detail the differentiable structure of the Wasserstein space, to which the metric theory applies, and use this structure to give also an equivalent concept of gradient flow. Our analysis includes measures in infinite-dimensional Hilbert spaces and it does not require any absolute continuity assumption on the measures involved.
@article{RLIN_2004_9_15_3-4_a13,
     author = {Ambrosio, Luigi and Gigli, Nicola and Savar\'e, Giuseppe},
     title = {Gradient flows with metric and differentiable structures, and applications to the {Wasserstein} space},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {327--343},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.35349},
     mrnumber = {2703679},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
AU  - Gigli, Nicola
AU  - Savaré, Giuseppe
TI  - Gradient flows with metric and differentiable structures, and applications to the Wasserstein space
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 327
EP  - 343
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/
LA  - en
ID  - RLIN_2004_9_15_3-4_a13
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%A Gigli, Nicola
%A Savaré, Giuseppe
%T Gradient flows with metric and differentiable structures, and applications to the Wasserstein space
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 327-343
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/
%G en
%F RLIN_2004_9_15_3-4_a13
Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe. Gradient flows with metric and differentiable structures, and applications to the Wasserstein space. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 327-343. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a13/

[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Arch. Rat. Mech. Anal., to appear (2002). | fulltext mini-dml | MR | Zbl

[2] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., (5), 19, 1995, 191-246. | MR | Zbl

[3] L. Ambrosio - N. Gigli - G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures. Birkhäuser, 2004. | Zbl

[4] L. Ambrosio - P. Tilli, Selected topics on «analysis in metric spaces». Scuola Normale Superiore, Pisa 2000. | MR | Zbl

[5] C. Baiocchi, Discretization of evolution variational inequalities. In: F. COLOMBINI - A. MARINO - L. MODICA - S. SPAGNOLO (eds.), Partial differential equations and the calculus of variations. Vol. I, Birkhäuser, Boston, MA, 1989, 59-92. | MR | Zbl

[6] J.-D. Benamou - Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84, 2000, n. 3, 375-393. | DOI | MR | Zbl

[7] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). MR 50 #1060 | MR | Zbl

[8] E.A. Carlen - W. Gangbo, Constrained steepest descent in the $2$-Wasserstein metric. Ann. Math., 157, 2003, n. 3, 807-846. | fulltext mini-dml | DOI | MR | Zbl

[9] J.A. Carrillo - R.J. Mccann - C. Villani, Contraction in the $2$-Wasserstein metric length space and thermalization of granular media. To appear. | Zbl

[10] E. De Giorgi, New problems on minimizing movements. In: C. BAIOCCHI - J.-L. LIONS (eds.), Boundary Value Problems for PDE and Applications. Masson, Paris 1993, 81-98. | MR | Zbl

[11] E. De Giorgi - A. Marino - M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187. | MR | Zbl

[12] D. Feyel - A.S. Üstünel, Measure transport on Wiener space and the Girsanov theorem. C.R. Math. Acad. Sci. Paris, 334, 2002, n. 11, 1025-1028. | DOI | MR | Zbl

[13] W. Gangbo - R.J. Mccann, The geometry of optimal transportation. Acta Math., 177, 1996, n. 2, 113-161. | DOI | MR | Zbl

[14] J. Heinonen - P. Koskela, Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181, 1998, n. 1, 1-61. | DOI | MR | Zbl

[15] R. Jordan - D. Kinderlehrer - F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29, 1998, n. 1, 1-17 (electronic). | DOI | MR | Zbl

[16] J. Jost, Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel 1997. | DOI | MR | Zbl

[17] A. Marino - C. Saccon - M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16(4), 1989, n. 2, 281-330. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[18] U.F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom., 6, 1998, n. 2, 199-253. | MR | Zbl

[19] R.J. Mccann, A convexity principle for interacting gases. Adv. Math., 128, 1997, n. 1, 153-179. | DOI | MR | Zbl

[20] R.H. Nochetto - G. Savaré - C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53, 2000, n. 5, 525-589. MR 1 737 503 | DOI | MR | Zbl

[21] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26, 2001, n. 1-2, 101-174. | DOI | MR | Zbl

[22] C. Villani, Topics in optimal transportation. Graduate studies in mathematics, 58, AMS, Providence, RI, 2003. | DOI | MR | Zbl