On a class of elliptic operators with unbounded coefficients in convex domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 315-326

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the realization $A$ of the operator $\mathcal{A} =\frac{1}{2} \triangle - (DU, D\cdot)$ in $L^{2}(\Omega, \mu)$, where $\Omega$ is a possibly unbounded convex open set in $\mathbb{R}^{N}$, $U$ is a convex unbounded function such that $\lim_{x \rightarrow \partial \Omega, \, x \in \Omega} U(x) = + \infty$ and $\lim_{|x| \rightarrow + \infty, \, x \in \Omega} U(x) = + \infty$, $DU(x)$ is the element with minimal norm in the subdifferential of $U$ at $x$, and $\mu(dx) = c \exp (-2 U(x)) dx$ is a probability measure, infinitesimally invariant for $\mathcal{A}$. We show that $A$, with domain $D(A) = \{u \in H^{2}(\Omega,\mu): (DU, Du) \in L^{2}(\Omega,\mu)\}$ is a dissipative self-adjoint operator in $L^{2}(\Omega,\mu)$. Note that the functions in the domain of $A$ do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by $A$.
@article{RLIN_2004_9_15_3-4_a12,
     author = {Da Prato, Giuseppe and Lunardi, Alessandra},
     title = {On a class of elliptic operators with unbounded coefficients in convex domains},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {315--326},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.35345},
     mrnumber = {MR2148888},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Lunardi, Alessandra
TI  - On a class of elliptic operators with unbounded coefficients in convex domains
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 315
EP  - 326
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/
LA  - en
ID  - RLIN_2004_9_15_3-4_a12
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Lunardi, Alessandra
%T On a class of elliptic operators with unbounded coefficients in convex domains
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 315-326
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/
%G en
%F RLIN_2004_9_15_3-4_a12
Da Prato, Giuseppe; Lunardi, Alessandra. On a class of elliptic operators with unbounded coefficients in convex domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 315-326. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/