On a class of elliptic operators with unbounded coefficients in convex domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 315-326
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We study the realization $A$ of the operator $\mathcal{A} =\frac{1}{2} \triangle - (DU, D\cdot)$ in $L^{2}(\Omega, \mu)$, where $\Omega$ is a possibly unbounded convex open set in $\mathbb{R}^{N}$, $U$ is a convex unbounded function such that $\lim_{x \rightarrow \partial \Omega, \, x \in \Omega} U(x) = + \infty$ and $\lim_{|x| \rightarrow + \infty, \, x \in \Omega} U(x) = + \infty$, $DU(x)$ is the element with minimal norm in the subdifferential of $U$ at $x$, and $\mu(dx) = c \exp (-2 U(x)) dx$ is a probability measure, infinitesimally invariant for $\mathcal{A}$. We show that $A$, with domain $D(A) = \{u \in H^{2}(\Omega,\mu): (DU, Du) \in L^{2}(\Omega,\mu)\}$ is a dissipative self-adjoint operator in $L^{2}(\Omega,\mu)$. Note that the functions in the domain of $A$ do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by $A$.
@article{RLIN_2004_9_15_3-4_a12,
author = {Da Prato, Giuseppe and Lunardi, Alessandra},
title = {On a class of elliptic operators with unbounded coefficients in convex domains},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {315--326},
publisher = {mathdoc},
volume = {Ser. 9, 15},
number = {3-4},
year = {2004},
zbl = {1162.35345},
mrnumber = {MR2148888},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/}
}
TY - JOUR AU - Da Prato, Giuseppe AU - Lunardi, Alessandra TI - On a class of elliptic operators with unbounded coefficients in convex domains JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 315 EP - 326 VL - 15 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/ LA - en ID - RLIN_2004_9_15_3-4_a12 ER -
%0 Journal Article %A Da Prato, Giuseppe %A Lunardi, Alessandra %T On a class of elliptic operators with unbounded coefficients in convex domains %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 315-326 %V 15 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/ %G en %F RLIN_2004_9_15_3-4_a12
Da Prato, Giuseppe; Lunardi, Alessandra. On a class of elliptic operators with unbounded coefficients in convex domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 315-326. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/