On a class of elliptic operators with unbounded coefficients in convex domains
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 315-326.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the realization $A$ of the operator $\mathcal{A} =\frac{1}{2} \triangle - (DU, D\cdot)$ in $L^{2}(\Omega, \mu)$, where $\Omega$ is a possibly unbounded convex open set in $\mathbb{R}^{N}$, $U$ is a convex unbounded function such that $\lim_{x \rightarrow \partial \Omega, \, x \in \Omega} U(x) = + \infty$ and $\lim_{|x| \rightarrow + \infty, \, x \in \Omega} U(x) = + \infty$, $DU(x)$ is the element with minimal norm in the subdifferential of $U$ at $x$, and $\mu(dx) = c \exp (-2 U(x)) dx$ is a probability measure, infinitesimally invariant for $\mathcal{A}$. We show that $A$, with domain $D(A) = \{u \in H^{2}(\Omega,\mu): (DU, Du) \in L^{2}(\Omega,\mu)\}$ is a dissipative self-adjoint operator in $L^{2}(\Omega,\mu)$. Note that the functions in the domain of $A$ do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by $A$.
@article{RLIN_2004_9_15_3-4_a12,
     author = {Da Prato, Giuseppe and Lunardi, Alessandra},
     title = {On a class of elliptic operators with unbounded coefficients in convex domains},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {315--326},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {3-4},
     year = {2004},
     zbl = {1162.35345},
     mrnumber = {1876411},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Lunardi, Alessandra
TI  - On a class of elliptic operators with unbounded coefficients in convex domains
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 315
EP  - 326
VL  - 15
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/
LA  - en
ID  - RLIN_2004_9_15_3-4_a12
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Lunardi, Alessandra
%T On a class of elliptic operators with unbounded coefficients in convex domains
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 315-326
%V 15
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/
%G en
%F RLIN_2004_9_15_3-4_a12
Da Prato, Giuseppe; Lunardi, Alessandra. On a class of elliptic operators with unbounded coefficients in convex domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 3-4, pp. 315-326. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_3-4_a12/

[1] V.I. Bogachev - N.V. Krylov - M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Part. Diff. Eqns., 26, 2001, 2037- 2080. | DOI | MR | Zbl

[2] H. Brézis, Opérateurs maximaux monotones. North-Holland, Amsterdam 1973.

[3] S. Cerrai, Second order PDE’s in finite and infinite dimensions. A probabilistic approach. Lecture Notes in Mathematics, 1762, Springer-Verlag, Berlin 2001. | DOI | MR | Zbl

[4] E.B. Davies, Heat kernels and spectral theory. Cambridge Univ. Press, Cambridge 1989. | DOI | MR | Zbl

[5] G. Da Prato - A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Diff. Eqns., 198, 2004, 35-52. | DOI | MR | Zbl

[6] G. Da Prato - M. Röckner, Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields, 124, 2002, 261-303. | DOI | MR | Zbl

[7] A. Eberle, Uniqueness and non-uniqueness of singular diffusion operators. Lecture Notes in Mathematics, 1718, Springer-Verlag, Berlin 1999. | MR | Zbl

[8] N.V. Krylov, On Kolmogorov’s equations for finite-dimensional diffusions. In: G. DA PRATO (ed.), Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 1-64. | MR | Zbl

[9] D. Lamberton, Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces $L^{p}$. J. Funct. Anal., 72, 1987, 252-262. | DOI | MR | Zbl

[10] A. Lunardi - V. Vespri, Optimal $L^{\infty}$ and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. CARISTI - E. MITIDIERI (eds.), Proceedings of the Conference Reaction-Diffusion Systems (Trieste 1995). Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239. | MR | Zbl

[11] K. Petersen, Ergodic Theory. Cambridge Univ. Press, Cambridge 1983. | Zbl

[12] M. Röckner, $L^{p}$-analysis of finite and infinite dimensional diffusion operators. In: G. DA PRATO (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 65-116. | Zbl

[13] W. Stannat, (Nonsymmetric) Dirichlet operators on $L^{1}$: existence, uniqueness and associated Markov processes. Ann. Sc. Norm. Sup. Pisa, Ser. IV, 28, 1999, 99-140. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[14] H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam 1978. | MR | Zbl