Nesting maps of Grassmannians
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 2, pp. 109-118.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $F$ be a field and $Gr(i, F^{n})$ be the Grassmannian of $i$-dimensional linear subspaces of $F^{n}$. A map $f : Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$ is called nesting if $l \subset f(l)$ for every $l \in Gr(i, F^{n})$. Glover, Homer and Stong showed that there are no continuous nesting maps $Gr(i, \mathbb{C}^{n}) \rightarrow Gr(j, \mathbb{C}^{n})$ except for a few obvious ones. We prove a similar result for algebraic nesting maps $Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$, where $F$ is an algebraically closed field of arbitrary characteristic. For $i=1$ this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space $P_{F}^{n}$.
Sia $F$ un campo e $Gr(i, F^{n})$ la Grassmanniana dei sottospazi $i$-dimensionali di $F^{n}$. Un’applicazione $f : Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$ si dice «nesting» se $l \subset f(l)$ per ogni $l \in Gr(i, F^{n})$. Glover, Homer and Stong hanno dimostrato che non ci sono applicazioni continue «nesting» da $Gr(i, \mathbb{C}^{n}) \rightarrow Gr(j, \mathbb{C}^{n})$ a parte un piccolo numero di eccezioni. Dimostriamo un risultato analogo per applicazioni «nesting» algebriche $Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$, nel caso in cui $F$ sia un campo algebricamente chiuso di caratteristica arbitraria. Per $i=1$ ciò implica una descrizione dei sottofibrati algebrici del fibrato tangente allo spazio proiettivo $P_{F}^{n}$.
@article{RLIN_2004_9_15_2_a4,
     author = {De Concini, Corrado and Reichstein, Zinovy},
     title = {Nesting maps of {Grassmannians}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {2},
     year = {2004},
     zbl = {1219.14052},
     mrnumber = {2205070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/}
}
TY  - JOUR
AU  - De Concini, Corrado
AU  - Reichstein, Zinovy
TI  - Nesting maps of Grassmannians
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 109
EP  - 118
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/
LA  - en
ID  - RLIN_2004_9_15_2_a4
ER  - 
%0 Journal Article
%A De Concini, Corrado
%A Reichstein, Zinovy
%T Nesting maps of Grassmannians
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 109-118
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/
%G en
%F RLIN_2004_9_15_2_a4
De Concini, Corrado; Reichstein, Zinovy. Nesting maps of Grassmannians. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/

[1] G. Bergman, Can one factor the classical adjoint of a generic matrix? arXiv:math.AC/0306126. | fulltext mini-dml | DOI | MR | Zbl

[2] R. Bott, On a topological obstruction to integrability. In: Global Analysis. Proc. Sympos. Pure Math., vol. XVI (Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 127-131. | MR | Zbl

[3] J.B. Carrell, Chern classes of the Grassmannians and Schubert calculus. Topology, 17, 1978, n. 2, 177-182. | MR | Zbl

[4] W. Fulton, Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2, Springer-Verlag, Berlin 1984. | MR | Zbl

[5] H.H. Glover - W.D. Homer - R.E. Stong, Splitting the tangent bundle of projective space. Indiana Univ. Math. J., 31, 1982, n. 2, 161-166. | DOI | MR | Zbl

[6] M.J. Greenberg - J.R. Harper, Algebraic topology: a first course. Mathematics lecture note series, 58, Benjamin Cummings Publishing Co., Reading, Mass., 1981. | MR | Zbl

[7] Ph. Griffiths - J. Harris, Principles of algebraic geometry. Pure and Applied Mathematics, Wiley-Interscience, New York 1978. | MR | Zbl

[8] H. Hiller, Geometry of Coxeter groups. Research notes in mathematics series, 54, Pitman Advanced Publishing Program, Boston, Mass., 1982. | MR | Zbl

[9] F. Hirzebruch, Topological methods in algebraic geometry. Third enlarged edition, Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag, New York 1966. | MR | Zbl

[10] C. Okonek - M. Schneider - H. Spindler, Vector bundles on complex projective spaces. Birkhäuser, Boston, Mass., 1980. | MR | Zbl

[11] S.S. Roan, Subbundles of the tangent bundle of complex projective space. Bull. Inst. Math. Acad. Sinica, 9, 1981, n. 1, 1-28. | MR | Zbl

[12] H.J. Ryser, Combinatorial mathematics. Carus mathematical monographs, n. 14, The Mathematical Association of America, New York 1963. | MR | Zbl

[13] R.E. Stong, Splitting the universal bundles over Grassmannians. In: G.M. RASSIAS (ed.), Algebraic and differential topology. Global differential geometry. Teubner-Texte Math., 70, Teubner, Leipzig 1984, 275-287. | MR | Zbl