Nesting maps of Grassmannians
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 2, pp. 109-118

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $F$ be a field and $Gr(i, F^{n})$ be the Grassmannian of $i$-dimensional linear subspaces of $F^{n}$. A map $f : Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$ is called nesting if $l \subset f(l)$ for every $l \in Gr(i, F^{n})$. Glover, Homer and Stong showed that there are no continuous nesting maps $Gr(i, \mathbb{C}^{n}) \rightarrow Gr(j, \mathbb{C}^{n})$ except for a few obvious ones. We prove a similar result for algebraic nesting maps $Gr(i, F^{n}) \rightarrow Gr(j, F^{n})$, where $F$ is an algebraically closed field of arbitrary characteristic. For $i=1$ this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space $P_{F}^{n}$.
@article{RLIN_2004_9_15_2_a4,
     author = {De Concini, Corrado and Reichstein, Zinovy},
     title = {Nesting maps of {Grassmannians}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {2},
     year = {2004},
     zbl = {1219.14052},
     mrnumber = {MR2148539},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/}
}
TY  - JOUR
AU  - De Concini, Corrado
AU  - Reichstein, Zinovy
TI  - Nesting maps of Grassmannians
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 109
EP  - 118
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/
LA  - en
ID  - RLIN_2004_9_15_2_a4
ER  - 
%0 Journal Article
%A De Concini, Corrado
%A Reichstein, Zinovy
%T Nesting maps of Grassmannians
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 109-118
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/
%G en
%F RLIN_2004_9_15_2_a4
De Concini, Corrado; Reichstein, Zinovy. Nesting maps of Grassmannians. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a4/