Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_2_a3, author = {Visintin, Augusto}, title = {Some properties of two-scale convergence}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {93--107}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {2}, year = {2004}, zbl = {1225.35031}, mrnumber = {1185639}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a3/} }
TY - JOUR AU - Visintin, Augusto TI - Some properties of two-scale convergence JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 93 EP - 107 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a3/ LA - en ID - RLIN_2004_9_15_2_a3 ER -
Visintin, Augusto. Some properties of two-scale convergence. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 2, pp. 93-107. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_2_a3/
[1] Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23, 1992, 1482-1518. | DOI | MR | Zbl
,[2] Shape Optimization by the Homogenization Method. Springer, New York 2002. | MR | Zbl
,[3] Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal., 21, 1990, 823-836. | DOI | MR | Zbl
- - ,[4] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam 1978. | MR | Zbl
- - ,[5] Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal., 27, 1996, 1520-1543. | DOI | MR | Zbl
- - ,[6] Continuity and compactness of measures. Adv. in Math., 37, 1980, 16-26. | DOI | MR | Zbl
- ,[7] A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I, 323, 1996, 329-334. | MR | Zbl
- ,[8] Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I, 335, 2002, 99-104. | DOI | MR | Zbl
- - ,[9] An Introduction to Homogenization. Oxford Univ. Press, New York 1999. | MR | Zbl
- ,[10] Homogenization of Differential Operators and Integral Functionals. Springer, Berlin 1994. | DOI | MR | Zbl
- - ,[11] Homogénéisation d’un circuit électrique. C.R. Acad. Sci. Paris, Ser. II, 324, 1997, 537-542. | Zbl
,[12] Homogenization of electrical networks including voltage-to-voltage amplifiers. Math. Models Meth. Appl. Sci., 9, 1999, 899-932. | DOI | MR | Zbl
- ,[13] Two-scale convergence. Int. J. Pure Appl. Math., 2, 2002, 35-86. | MR | Zbl
- - ,[14] $H$-convergence. In: A. CHERKAEV - R. KOHN (eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston 1997, 21-44. | MR | Zbl
- ,[15] A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20, 1989, 608-623. | DOI | MR | Zbl
,[16] Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal., 21, 1990, 1394-1414. | DOI | MR | Zbl
,[17] Mathematical tools for studying oscillations and concentrations: from Young measures to $H$-measures and their variants. In: N. ANTONIĆ - C.J. VAN DUIJN - W. JÄGER - A. MIKELIĆ (eds.), Multiscale Problems in Science and Technology. Springer, Berlin 2002, 1-84. | MR | Zbl
,[18] Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45, 1992, 301-326. | DOI | MR | Zbl
,[19] On an extension of the method of two-scale convergence and its applications. Sb. Math., 191, 2000, 973-1014. | DOI | MR | Zbl
,