Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 1, pp. 29-38.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space $L^{2}(H,\nu)$ where $\nu$ is an invariant measure
Si dimostra l’essenziale m-dissipatività dell’operatore di Kolmogorov associato al flusso dell’equazione di Navier-Stokes stocastica con condizioni periodiche in uno spazio $L^{2}(H,\nu)$ dove $\nu$ è una misura invariante.
@article{RLIN_2004_9_15_1_a2,
     author = {Barbu, Viorel and Da Prato, Giuseppe and Debussche, Arnaud},
     title = {Essential m-dissipativity of {Kolmogorov} operators corresponding to periodic $2D${-Navier} {Stokes} equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {1},
     year = {2004},
     zbl = {1096.35126},
     mrnumber = {1930573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a2/}
}
TY  - JOUR
AU  - Barbu, Viorel
AU  - Da Prato, Giuseppe
AU  - Debussche, Arnaud
TI  - Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 29
EP  - 38
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a2/
LA  - en
ID  - RLIN_2004_9_15_1_a2
ER  - 
%0 Journal Article
%A Barbu, Viorel
%A Da Prato, Giuseppe
%A Debussche, Arnaud
%T Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 29-38
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a2/
%G en
%F RLIN_2004_9_15_1_a2
Barbu, Viorel; Da Prato, Giuseppe; Debussche, Arnaud. Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a2/

[1] V. Barbu - G. Da Prato, The transition semigroup of stochastic Navier-Stokes equations in $2D$. Infinite Dimensional Analysis, Quantum Probability and related topics, to appear.

[2] J. Bricmont - A. Kupiainen - R. Lefevere, Exponential mixing of the $2D$ stochastic Navier-Stokes dynamics. Commun. Math. Phys., 230, n. 1, 2002, 87-132. | fulltext mini-dml | DOI | MR | Zbl

[3] S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367. | fulltext EuDML | DOI | MR | Zbl

[4] G. Da Prato - L. Tubaro, Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126, 2001, 685-699. | fulltext EuDML | DOI | MR | Zbl

[5] G. Da Prato - J. Zabczyk, Second Order Partial Differential Equations in Hilbert spaces. London Mathematical Society Lecture Notes n. 293, Cambridge University Press, 2002. | DOI | MR | Zbl

[6] F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1, 1994, 403-423. | DOI | MR | Zbl

[7] F. Flandoli - B. Maslowski, Ergodicity of the $2D$ Navier-Stokes equation under random perturbations. Commun. Math. Phys., 171, 1995, 119-141. | fulltext mini-dml | MR | Zbl

[8] S. Kuksin - A. Shirikyan, A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys., 221, n. 2, 2001, 351-366. | DOI | MR | Zbl

[9] S. Kuksin - A. Piatniski - A. Shirikyan, A coupling approach to randomly forced nonlinear PDE’s. II. Commun. Math. Phys., 230, n. 1, 2002, 81-85. | DOI | MR | Zbl

[10] R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland, 1977. | Zbl

[11] E. Weinan - J.C. Mattingly - Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys., 224, n. 1, 2001, 83-106. | DOI | MR | Zbl