Multidimensional Opial inequalities for functions vanishing at an interior point
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 1, pp. 5-15.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we generalize Opial inequalities in the multidimensional case over balls. The inequalities carry weights and are proved to be sharp. The functions under consideration vanish at the center of the ball.
In questo lavoro si generalizzano alcune disuguaglianze di Opial su palle al caso multidimensionale. Si dimostra che tali disuguaglianze, che contengono pesi, sono ottimali. Le funzioni considerate si annullano al centro della palla.
@article{RLIN_2004_9_15_1_a0,
     author = {Anastassiou, George A. and Goldstein, Gis\`ele Ruiz and Goldstein, Jerome A.},
     title = {Multidimensional {Opial} inequalities for functions vanishing at an interior point},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {Ser. 9, 15},
     number = {1},
     year = {2004},
     zbl = {1072.26006},
     mrnumber = {1340422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a0/}
}
TY  - JOUR
AU  - Anastassiou, George A.
AU  - Goldstein, Gisèle Ruiz
AU  - Goldstein, Jerome A.
TI  - Multidimensional Opial inequalities for functions vanishing at an interior point
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2004
SP  - 5
EP  - 15
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a0/
LA  - en
ID  - RLIN_2004_9_15_1_a0
ER  - 
%0 Journal Article
%A Anastassiou, George A.
%A Goldstein, Gisèle Ruiz
%A Goldstein, Jerome A.
%T Multidimensional Opial inequalities for functions vanishing at an interior point
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2004
%P 5-15
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a0/
%G en
%F RLIN_2004_9_15_1_a0
Anastassiou, George A.; Goldstein, Gisèle Ruiz; Goldstein, Jerome A. Multidimensional Opial inequalities for functions vanishing at an interior point. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a0/

[1] R.P. Agarwal - P.Y.H. Pang, Opial inequalities with applications in differential and difference equations. Kluwer Academic Publishers, Dordrecht-Boston-London 1995. | MR | Zbl

[2] P.R. Beesack, On an integral inequality of Z. Opial. Trans. Amer. Math. Soc., 104, 1962, 479-475. | MR | Zbl

[3] W. Fleming, Functions of Several Variables. Undergraduate texts in mathematics, 2nd ed., Springer-Verlag, New York 1977. | MR | Zbl

[4] N. Levinson, On an inequality of Opial and Beesack. Proc. Amer. Math. Soc., 15, 1964, 565-566. | MR | Zbl

[5] I.D. Nečaev, Integral inequalities with gradients and derivatives. Soviet Math. Dokl., 22, 1973, 1184-1187. | Zbl

[6] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math., 8, 1960, 61-63. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[7] Z. Opial, Sur une inégalité. Ann. Polon. Math., 8, 1960, 29-32. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[8] W.C. Troy, On the Opial-Olech-Beesack inequalities. USA-Chile Workshop on Nonlinear Analysis. Electron. J. Diff. Eqns., Conference, 06, 2001, 297-301. http://ejde.math.swt.edu or http://ejde.math.unt.edu. | fulltext EuDML | MR | Zbl