The mean curvature of a Lipschitz continuous manifold
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 257-277

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The paper is devoted to the description of some connections between the mean curvature in a distributional sense and the mean curvature in a variational sense for several classes of non-smooth sets. We prove the existence of the mean curvature measure of $\partial E$ by using a technique introduced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under suitable assumptions, the mean curvature measure of $\partial E$ is the weak limit (in the sense of distributions) of the mean curvatures of a sequence of regular $n$-dimensional manifolds $M_{j}$ convergent to $\partial E$. The manifolds $M_{j}$ are closely related to the level surfaces of the variational mean curvature $H_{E}$ of $E$.
@article{RLIN_2003_9_14_4_a0,
     author = {Barozzi, Elisabetta and Gonzalez, Eduardo and Massari, Umberto},
     title = {The mean curvature of a {Lipschitz} continuous manifold},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {257--277},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {4},
     year = {2003},
     zbl = {1072.49032},
     mrnumber = {MR2104215},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a0/}
}
TY  - JOUR
AU  - Barozzi, Elisabetta
AU  - Gonzalez, Eduardo
AU  - Massari, Umberto
TI  - The mean curvature of a Lipschitz continuous manifold
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 257
EP  - 277
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a0/
LA  - en
ID  - RLIN_2003_9_14_4_a0
ER  - 
%0 Journal Article
%A Barozzi, Elisabetta
%A Gonzalez, Eduardo
%A Massari, Umberto
%T The mean curvature of a Lipschitz continuous manifold
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 257-277
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a0/
%G en
%F RLIN_2003_9_14_4_a0
Barozzi, Elisabetta; Gonzalez, Eduardo; Massari, Umberto. The mean curvature of a Lipschitz continuous manifold. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 257-277. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a0/