The fascinating homotopy structure of Sobolev spaces
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 207-217.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We discuss recent developments in the study of the homotopy classes for the Sobolev spaces $W^{1,p} (M;N)$. In particular, we report on the work of H. Brezis - Y. Li [5] and F.B. Hang - F.H. Lin [9].
@article{RLIN_2003_9_14_3_a3,
     author = {Brezis, Ha{\"\i}m},
     title = {The fascinating homotopy structure of {Sobolev} spaces},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {3},
     year = {2003},
     zbl = {1225.46024},
     mrnumber = {1120602},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a3/}
}
TY  - JOUR
AU  - Brezis, Haïm
TI  - The fascinating homotopy structure of Sobolev spaces
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 207
EP  - 217
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a3/
LA  - en
ID  - RLIN_2003_9_14_3_a3
ER  - 
%0 Journal Article
%A Brezis, Haïm
%T The fascinating homotopy structure of Sobolev spaces
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 207-217
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a3/
%G en
%F RLIN_2003_9_14_3_a3
Brezis, Haïm. The fascinating homotopy structure of Sobolev spaces. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 3, pp. 207-217. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_3_a3/

[1] F. Bethuel, The approximation problem for Sobolev maps between manifolds. Acta Math., 167, 1991, 153-206. | DOI | MR | Zbl

[2] J. Bourgain - H. Brezis - P. Mironescu, Lifting in Sobolev spaces. J. Analyse Math., 80, 2000, 37-86. | DOI | MR | Zbl

[3] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces. Uspekhi Mat. Nauk (volume in honor of M. Vishik), 57, 2002, 59-74. | DOI | MR | Zbl

[4] H. Brezis - J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys., 92, 1983, 203-215. | fulltext mini-dml | MR | Zbl

[5] H. Brezis - Y.Y. Li, Topology and Sobolev spaces. J. Funct. Anal., 183, 2001, 321-369. | DOI | MR | Zbl

[6] H. Brezis - Y.Y. Li - P. Mironescu - L. Nirenberg, Degree and Sobolev spaces. Topological methods in Nonlinear Analysis, 13, 1999, 181-190. | MR | Zbl

[7] H. Brezis - L. Nirenberg, Degree theory and BMO, Part I: compact manifolds without boundaries. Selecta Math., 1, 1995, 197-263. | DOI | MR | Zbl

[8] M. Giaquinta - S. Hildebrandt, A priori estimate for harmonic mappings. J. Reine Angew. Math., 336, 1982, 124-164. | fulltext EuDML | DOI | MR | Zbl

[9] F.B. Hang - F.H. Lin, Topology of Sobolev mappings II. Acta Math., to appear. | DOI | MR | Zbl

[10] J. Rubinstein - P. Sternberg, Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents. Comm. Math. Phys., 179, 1996, 257-263. | fulltext mini-dml | MR | Zbl

[11] R. Schoen - K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom., 18, 1983, 253-268. | fulltext mini-dml | MR | Zbl

[12] B. White, Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math., 160, 1988, 1-17. | DOI | MR | Zbl