The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 2, pp. 137-168
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We give a complete description of the fourth tautological group of the moduli space of pointed stable curves, $\overline{\mathfrak{M}}_{g,n}$, and prove that for $g \ge 8$ it coincides with the cohomology group with rational coefficients. We further give a conjectural upper bound depending on the genus for the degree of new tautological relations.
@article{RLIN_2003_9_14_2_a3,
author = {Polito, Marzia},
title = {The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {137--168},
year = {2003},
volume = {Ser. 9, 14},
number = {2},
zbl = {1177.14056},
mrnumber = {MR2053662},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a3/}
}
TY - JOUR
AU - Polito, Marzia
TI - The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology
JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY - 2003
SP - 137
EP - 168
VL - 14
IS - 2
UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a3/
LA - en
ID - RLIN_2003_9_14_2_a3
ER -
%0 Journal Article
%A Polito, Marzia
%T The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 137-168
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a3/
%G en
%F RLIN_2003_9_14_2_a3
Polito, Marzia. The fourth tautological group of $\overline{\mathfrak{M}}_{g,n}$ and relations with the cohomology. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 2, pp. 137-168. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a3/