Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2003_9_14_2_a2, author = {Georgiev, Vladimir and Visciglia, Nicola}, title = {$L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {109--135}, publisher = {mathdoc}, volume = {Ser. 9, 14}, number = {2}, year = {2003}, zbl = {1072.35111}, mrnumber = {397194}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a2/} }
TY - JOUR AU - Georgiev, Vladimir AU - Visciglia, Nicola TI - $L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 109 EP - 135 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a2/ LA - en ID - RLIN_2003_9_14_2_a2 ER -
%0 Journal Article %A Georgiev, Vladimir %A Visciglia, Nicola %T $L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 109-135 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a2/ %G en %F RLIN_2003_9_14_2_a2
Georgiev, Vladimir; Visciglia, Nicola. $L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 2, pp. 109-135. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_2_a2/
[1] Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2), 1975, 151-218. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[2] Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40, 1970/1971, 281-311. | MR | Zbl
- ,[3] Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal., 150(2), 1997, 356-382. | DOI | MR | Zbl
- - ,[4] $L^{p}$ estimates for the wave equation with a potential. Comm. Partial Differential Equations, 18(7-8), 1993, 1365-1397. | DOI | MR | Zbl
- ,[5] Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators. J. Analyse Math., 43, 1983/84, 215-250. | DOI | MR | Zbl
- ,[6] Strichartz estimates for the Wave and Schrödinger Equations with the Inverse-Square Potential. Preprint, 2002. | fulltext mini-dml | Zbl
- - - ,[7] On the wave equation with a potential. Comm. Partial Differential Equations, 25(7-8), 2000, 1549-1565. | DOI | MR | Zbl
,[8] Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rational Mech. Anal., 5, 1960, 1-34. | MR | Zbl
,[9] Perturbations of the Laplacian with variable coefficients in exterior domains and differentiability of the resolvent. Asymptot. Anal., 19(3-4), 1999, 209-232. | MR | Zbl
,[10] $l^{p}$ estimates for the wave equation with the inverse-square potential. Discrete Contin. Dynam. Systems, v. 9, n. 2, 2003, 427-442. | MR | Zbl
- - ,[11] Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York 1975. | MR | Zbl
- ,[12] Autour de l’approximation semi-classique. Progress in Mathematics, 68, Birkhäuser Boston Inc., Boston, MA, 1987. | MR | Zbl
,[13] Geometric wave equations. Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York 1998. | MR | Zbl
- ,[14] Asymptotic distribution of resonances for convex obstacles. Acta Math., 183(2), 1999, 191-253. | DOI | MR | Zbl
- ,[15] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3), 1977, 705-714. | fulltext mini-dml | MR | Zbl
,[16] Asymptotic methods in equations of mathematical physics. (translated from the Russian by E. Primrose). Gordon & Breach Science Publishers, New York 1989. | MR | Zbl
,[17] About the Strichartz estimate and the dispersive estimate. C.R. Acad. Bulgare Sci., 55(5), 2002, 9-14. | MR | Zbl
,