On the $G$-convergence of Morrey operators
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 33-49.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Following Morrey [14] we associate to any measurable symmetric $2 \times 2$ matrix valued function $A(x)$ such that $$\frac{|\xi|^{2}}{K} \le (A(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$$\Omega \in \mathbb{R}^{2}$ and to any $u \in W^{1,2}(\Omega)$ another symmetric $2 \times 2$ matrix valued function $\mathcal{A} = \mathcal{A}(A,u)$ with $det \, \mathcal{A} = 1$ and satisfying $$\frac{|\xi|^{2}}{K} \le (\mathcal{A}(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$ The crucial property of $\mathcal{A}$ is that $\mathcal{A} \nabla u = A \nabla u$, if $\nabla u \neq 0$. We study the properties of $\mathcal{A}$ as a function of $A$ and $u$. In particular, we show that, if $A_{b} \rightarrow^{G} A$, $u_{b} \rightharpoonup u$, $\nabla u \neq 0$ and $div \, A_{b} \nabla u_{b} = 0$ then $\mathcal{A} (A_{b},u_{b}) \rightarrow^{G} \mathcal{A} (A, u)$.
Seguendo Morrey [14], ad ogni matrice simmetrica $A(x)$ a coefficienti misurabili, tale che $$\frac{|\xi|^{2}}{K} \le (A(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$$\Omega \in \mathbb{R}^{2}$ e ad ogni $u \in W^{1,2}(\Omega)$ si può associare un'altra matrice simmetrica $\mathcal{A} = \mathcal{A}(A,u)$ con $det \, \mathcal{A} = 1$ e soddisfacente $$\frac{|\xi|^{2}}{K} \le (\mathcal{A}(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$ La principale proprietà di $\mathcal{A}$ è che $\mathcal{A} \nabla u = A \nabla u$, se $\nabla u \neq 0$. Si studiano le proprietà di $\mathcal{A}$ come funzione di $A$ e di $u$. In particolare, si dimostra che, se $A_{b} \rightarrow^{G} A$, $u_{b} \rightharpoonup u$, $\nabla u \neq 0$ and $div \, A_{b} \nabla u_{b} = 0$ then $\mathcal{A} (A_{b},u_{b}) \rightarrow^{G} \mathcal{A} (A, u)$.
@article{RLIN_2003_9_14_1_a3,
     author = {Formica, Maria Rosaria and Sbordone, Carlo},
     title = {On the $G$-convergence of {Morrey} operators},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {1},
     year = {2003},
     zbl = {1105.35030},
     mrnumber = {1922134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/}
}
TY  - JOUR
AU  - Formica, Maria Rosaria
AU  - Sbordone, Carlo
TI  - On the $G$-convergence of Morrey operators
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 33
EP  - 49
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/
LA  - en
ID  - RLIN_2003_9_14_1_a3
ER  - 
%0 Journal Article
%A Formica, Maria Rosaria
%A Sbordone, Carlo
%T On the $G$-convergence of Morrey operators
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 33-49
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/
%G en
%F RLIN_2003_9_14_1_a3
Formica, Maria Rosaria; Sbordone, Carlo. On the $G$-convergence of Morrey operators. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 33-49. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/

[1] C. Capone, Quasiharmonic fields and Beltrami operators. Comm. Math. Univ. Carolinae, 43, 2, 2002, 363-377. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. U.M.I., 1, 1968, 135-137. | MR | Zbl

[3] De Arcangelis - P. Donato, On the convergence of Laplace-Beltrami operators associated to quasiregular mappings. Studia mathematica, t. LXXXVI, 1987, 189-204. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[4] M.R. Formica, On the $\Gamma$-convergence of Laplace-Beltrami operators in the plane. Annales Academiae Scientiarum Fennicae Matematica, vol. 25, 2000, 423-438. | fulltext EuDML | MR | Zbl

[5] M.R. Formica, Degenerate Elliptic Operators with coefficients in EXP. Ph.D. thesis, Università di Napoli «Federico II», 2001. | Zbl

[6] M.R. Formica, Beltrami operators in the plane. Preprint n. 6, Aracne editrice, Roma 2002. | MR | Zbl

[7] G.A. Francfort - F. Murat, Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media. In: R.J. KNOPS - A.A. LACEY (eds.), «Nonclassical» continuum mechanics. London, Math. Soc. Lecture Notes Series, 122, Cambridge 1987, 197-212. | DOI | MR | Zbl

[8] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies, 105, Princeton Univ. Press, 1983. | MR | Zbl

[9] L. Greco - C. Sbordone, Sharp upper bounds for the degree of regularity of the solutions to an elliptic equation. Comm. P.D.E., 27, 5-6, 2002, 945-952. | DOI | MR | Zbl

[10] T. Iwaniec - C. Sbordone, Quasiharmonic fields. Ann. Inst. H. Poincaré - AN 18, 5, 2001, 519-572. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[11] O. John - J. Maly - J. Stará, Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolinae, 30, 1, 1989, 33-43. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] A.I. Koshelev, Regularity of solutions of quasilinear elliptic systems. Russian Math. Survey, 33, 1978, 1-52. | MR | Zbl

[13] J. Maly, Finding equation from solutions. Draft 1999.

[14] C.B. Morrey, On the solution of quasilinear elliptic partial differential equations. Trans. Amer. Math. Soc., 43, 1938, 126-166. | Jbk 64.0460.02

[15] F. Murat, Compacité par Compensation. Ann. Sc. Norm. Pisa, 5, 1978, 489-507. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[16] L. Piccinini - S. Spagnolo, On the Hölder Continuity of Solutions of Second Order Elliptic Equations in two Variables. Ann. Sc. Norm. Pisa, 26, 1972, 391-402. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[17] J. Soucek, Singular solutions to linear elliptic systems. Comm. Math. Univ. Carolinae, 25, 1984, 273-281. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[18] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm Sup. Pisa, vol. 22, fasc. 4, 1968, 571-597. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[19] S. Spagnolo, Some convergence problems. Symposia Mathematica, XVIII, 1976, 391-397. | MR | Zbl

[20] L. Tartar, Homogéneization et compacité par compensation. Cours Peccot, Collège de France, 1977. | fulltext mini-dml | fulltext mini-dml | Zbl