On the $G$-convergence of Morrey operators
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 33-49
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Following Morrey [14] we associate to any measurable symmetric $2 \times 2$ matrix valued function $A(x)$ such that
$$\frac{|\xi|^{2}}{K} \le (A(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$$\Omega \in \mathbb{R}^{2}$ and to any $u \in W^{1,2}(\Omega)$ another symmetric $2 \times 2$ matrix valued function $\mathcal{A} = \mathcal{A}(A,u)$ with $det \, \mathcal{A} = 1$ and satisfying
$$\frac{|\xi|^{2}}{K} \le (\mathcal{A}(x) \xi,\xi) \le K |\xi|^{2} \quad \text{a.e.} \quad x \in \Omega, \, \forall \xi \in \mathbb{R}^{2},$$
The crucial property of $\mathcal{A}$ is that $\mathcal{A} \nabla u = A \nabla u$, if $\nabla u \neq 0$. We study the properties of $\mathcal{A}$ as a function of $A$ and $u$. In particular, we show that, if $A_{b} \rightarrow^{G} A$, $u_{b} \rightharpoonup u$, $\nabla u \neq 0$ and $div \, A_{b} \nabla u_{b} = 0$ then $\mathcal{A} (A_{b},u_{b}) \rightarrow^{G} \mathcal{A} (A, u)$.
@article{RLIN_2003_9_14_1_a3,
author = {Formica, Maria Rosaria and Sbordone, Carlo},
title = {On the $G$-convergence of {Morrey} operators},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {33--49},
publisher = {mathdoc},
volume = {Ser. 9, 14},
number = {1},
year = {2003},
zbl = {1105.35030},
mrnumber = {MR2057273},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/}
}
TY - JOUR AU - Formica, Maria Rosaria AU - Sbordone, Carlo TI - On the $G$-convergence of Morrey operators JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 33 EP - 49 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/ LA - en ID - RLIN_2003_9_14_1_a3 ER -
%0 Journal Article %A Formica, Maria Rosaria %A Sbordone, Carlo %T On the $G$-convergence of Morrey operators %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 33-49 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/ %G en %F RLIN_2003_9_14_1_a3
Formica, Maria Rosaria; Sbordone, Carlo. On the $G$-convergence of Morrey operators. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 33-49. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a3/