Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2003_9_14_1_a0, author = {B\'aez-Duarte, Luis}, title = {A strengthening of the {Nyman-Beurling} criterion for the {Riemann} hypothesis}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {5--11}, publisher = {mathdoc}, volume = {Ser. 9, 14}, number = {1}, year = {2003}, zbl = {1097.11041}, mrnumber = {1239449}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a0/} }
TY - JOUR AU - Báez-Duarte, Luis TI - A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 5 EP - 11 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a0/ LA - en ID - RLIN_2003_9_14_1_a0 ER -
%0 Journal Article %A Báez-Duarte, Luis %T A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 5-11 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a0/ %G en %F RLIN_2003_9_14_1_a0
Báez-Duarte, Luis. A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_1_a0/
[1] On Beurling’s Real Variable Reformulation of the Riemann Hypothesis. Adv. in Math., 101, n. 1, 1993, 10-30. | fulltext mini-dml | DOI | MR | Zbl
,[2] A class of invariant unitary operators. Adv. in Math., 144, n. 1, 1999, 1-12. | DOI | MR | Zbl
,[3] Arithmetical versions of the Nyman-Beurling criterion for the Riemann hypothesis. IJMMS, IJMMS/1324, 2002, to appear. | DOI | MR | Zbl
,[4] Notes sur la fonction $\zeta$ de Riemann, 3. Adv. in Math., 149, n. 1, 2000, 130-144. | DOI | MR | Zbl
- - - ,[5] Notes sur la fonction $\zeta$ de Riemann, 1. Adv. in Math., 139, 1998, 310-321. | DOI | MR | Zbl
- ,[6] A closure problem related to the Riemann Zeta-function. Proc. Nat. Acad. Sci., 41, 1955, 312-314. | MR | Zbl
,[7] A lower bound in an approximation problem involving the zeroes of the Riemann zeta function. Math., AIM01/048, 2001 Adv. in Math., to appear. | fulltext mini-dml | DOI | MR | Zbl
,[8] On an analytic estimate in the theory of the Riemann Zeta function and a theorem of Báez-Duarte. Preprint, 18 Feb. 2002, available at arXiv.org as math.NT/0202166. | fulltext mini-dml | MR
,[9] On the Balazard-Saias criterion for the Riemann hypothesis. Posted in http://arXiv.org/abs/math.NT/002254, Feb. 2000. | fulltext mini-dml
- ,[10] Zero-Free Regions for the Riemann Zeta-Function, density of invariant Subspaces of Functions, and the Theory of equal Distribution. Preprint, 1997. | Zbl
,[11] Le critère de Beurling et Nyman pour l’hypothèse de Riemann: aspects numériques. Université de Bordeaux, preprint 2001, submitted to Experimental Mathematics. | fulltext mini-dml | MR | Zbl
- ,[12] Convergence and the Riemann Hypothesis. Comm. Korean Math. Soc., 11, 1996, 57-62. | MR | Zbl
,[13] Distance formulae and invariant subspaces, with an application to localization of zeroes of the Riemann $\zeta$-function. Ann. Inst. Fourier (Grenoble), 45, 1995, n. 1, 1-17. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[14] On some groups and semigroups of translations. Thesis, Uppsala 1950.
,[15] Topics in Analytic Number Theory. Die Grundleheren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York 1973. | MR | Zbl
,[16] The Theory of the Riemann Zeta-Function. Clarendon Press, Oxford 1951. | MR | Zbl
,[17] Sur un système biorthogonal relié a l’hypothèse de Riemann (in Russian). Algebra i Annaliz, 7, 1995, 118-135. Also appeared as: On a biorthogonal system related with the Riemann hypothesis, St. Petersburg Math. J., 7, 1996, 405-419. | MR | Zbl
,[18] On a system of step functions, J. Math. Sci. (New York), 110, 2002, n. 5, 2930-2943; translated from the original Russian in Zapiski Nauchnyh Seminarov POMI, 262, 1999, 49-70. | DOI | MR | Zbl
,