Poisson-like kernels in tube domains over light-cones
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 271-283.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A family of holomorphic function spaces can be defined with reproducing kernels $B_{\alpha}(z,w)$, obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: $P_{\alpha}(z,w) = |B_{\alpha}(z,w)|^{2} / B_{\alpha}(z,z)$. In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.
@article{RLIN_2002_9_13_3-4_a8,
     author = {Garrig\'os, Gustavo},
     title = {Poisson-like kernels in tube domains over light-cones},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {271--283},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1225.32005},
     mrnumber = {1311766},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a8/}
}
TY  - JOUR
AU  - Garrigós, Gustavo
TI  - Poisson-like kernels in tube domains over light-cones
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 271
EP  - 283
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a8/
LA  - en
ID  - RLIN_2002_9_13_3-4_a8
ER  - 
%0 Journal Article
%A Garrigós, Gustavo
%T Poisson-like kernels in tube domains over light-cones
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 271-283
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a8/
%G en
%F RLIN_2002_9_13_3-4_a8
Garrigós, Gustavo. Poisson-like kernels in tube domains over light-cones. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 271-283. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a8/

[1] D. Békollé - A. Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of $\mathbb{C}^{n}$. Colloq. Math., 68, 1995, 81-100. | fulltext EuDML | MR | Zbl

[2] D. Békollé - A. Bonami - G. Garrigós - F. Ricci, Littlewood-Paley decompositions and Besov spaces related to symmetric cones. Univ. Orléans, preprint 2001. | fulltext mini-dml

[3] D. Békollé - A. Bonami - M. Peloso - F. Ricci, Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z., 237, 2001, 31-59. | DOI | MR | Zbl

[4] A. Bonami, Three related problems on Bergman spaces of tube domains over symmetric cones. Rend. Mat. Acc. Lincei, s. 9, v. 13, 2002, 183-197. | fulltext bdim | MR | Zbl

[5] J. Faraut - A. Korányi, Analysis on symmetric cones. Clarendon Press, Oxford 1994. | MR | Zbl

[6] C. Fefferman, The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336. | MR | Zbl

[7] G. Garrigós, Generalized Hardy spaces in tube domains over cones. Colloq. Math., 90 (2), 2001, 213-251. | DOI | MR | Zbl

[8] I. Gelfand - G. Shilov, Generalized functions I. Academic Press, New York 1964. | MR | Zbl

[9] H. Rossi - M. Vergne, Équations de Cauchy-Riemann tangentielles associées a un domaine de Siegel. Ann. scient. Éc. Norm. Sup., 9, 1976, 31-80. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[10] E. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups. Actes, Congrès intern. math. 1, 1970, 173-189. | MR | Zbl

[11] E. Stein, Harmonic Analysis. Princeton University Press, 1993. | MR | Zbl

[12] E. Stein - G. Weiss, Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. | MR | Zbl

[13] E. Stein - G. Weiss - M. Weiss, $H^{p}$ classes of holomorphic functions in tube domains. Proc. Nat. Acad. Sci. USA, 52, 1964, 1035-1039. | MR | Zbl

[14] M. Vergne - H. Rossi, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math., 136, 1976, 1-59. | MR | Zbl