Bounded symmetric domains and derived geometric structures
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Every homogeneous circular convex domain $D \subset \mathbb{C}^{n}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb{C})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb{C}^{n}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb{C}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb{C}^{n}$ that are closely related to the geometry of the bounded symmetric domain $D$.
@article{RLIN_2002_9_13_3-4_a6,
     author = {Kaup, Wilhelm},
     title = {Bounded symmetric domains and derived geometric structures},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {243--257},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1098.32008},
     mrnumber = {1656598},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/}
}
TY  - JOUR
AU  - Kaup, Wilhelm
TI  - Bounded symmetric domains and derived geometric structures
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 243
EP  - 257
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/
LA  - en
ID  - RLIN_2002_9_13_3-4_a6
ER  - 
%0 Journal Article
%A Kaup, Wilhelm
%T Bounded symmetric domains and derived geometric structures
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 243-257
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/
%G en
%F RLIN_2002_9_13_3-4_a6
Kaup, Wilhelm. Bounded symmetric domains and derived geometric structures. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/

[1] B. Aupetit, Sur les transformations qui conservent le spectre. 13th International Conference on Banach Algebras (Blaubeuren 1997), de Gruyter, Berlin 1998, 55-78. | MR | Zbl

[2] J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math., 1, 1949, 282-287. | MR | Zbl

[3] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier, 16, 1966, 1-95. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[4] J.R. Faulkner, On the Geometry of Inner Ideals. J. of Algebra, 26, 1973, 1-9. | MR | Zbl

[5] Y. Friedman - B. Russo, The Gelfand-Naimark theorem for JB*-triples. Duke Math. J., 53, 1986, 139-148. | fulltext mini-dml | DOI | MR | Zbl

[6] G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. I. Sitzungsberichte Königl. Preuss. Akad. Wiss., 1897, 994-1015. | Jbk 28.0130.01

[7] L.A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, vol. 364, Springer-Verlag, Berlin-Heidelberg-New York 1973. | MR | Zbl

[8] L.A. Harris - W. Kaup, Linear algebraic groups in infinite dimensions. Ill. J. Math., 21, 1977, 666-674. | fulltext mini-dml | MR | Zbl

[9] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York-San Francisco-London 1978. | MR | Zbl

[10] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z., 183, 1983, 503-529. | fulltext EuDML | DOI | MR | Zbl

[11] W. Kaup, Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II. Math. Ann., 257, 1981, 463-483; 262, 1983, 503-529. | fulltext EuDML | DOI | MR | Zbl

[12] W. Kaup, On Grassmannians associated with JB*-triples. Math. Z., 236, 2001, 567-584. | DOI | MR | Zbl

[13] W. Kaup - D. Zaitsev, On Symmetric Cauchy-Riemann Manifolds. Adv. in Math., 149, 2000, 145-181. | fulltext mini-dml | DOI | MR | Zbl

[14] W. Kaup - D. Zaitsev, On the CR-structure of compact group orbits associated with bounded symmetric domains. In preparation. | Zbl

[15] M. Koecher, An elementary approach to bounded symmetric domains. Rice Univ., Houston 1969. | MR | Zbl

[16] A. Korányi - J.A. Wolf, Realization of hermitian symmetric spaces as generalized half planes. Ann. of Math., 81, 1965, 265-288. | MR | Zbl

[17] O. Loos, Symmetric Spaces I/II. W. A. Benjamin, Inc., New York-Amsterdam 1969. | Zbl

[18] O. Loos, Jordan Pairs. Lecture Notes in Mathematics, vo. 460, Springer-Verlag Berlin-Heidelberg-New York 1975. | MR | Zbl

[19] O. Loos, Bounded symmetric domains and Jordan pairs. Mathematical Lectures, University of California at Irvine, Irvine 1977.

[20] T.A. Springer, On the geometric algebra of the octave planes. Indag. Math., 24, 1962, 451-468. | MR | Zbl

[21] M. Takeuchi, On orbits in a compact hermitian symmetric space. Am. J. Math., 90, 1968, 657-680. | MR | Zbl

[22] J.A. Wolf, The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components. Bull. Am. Math., 75, 1969, 1121-1247. | fulltext mini-dml | MR | Zbl

[23] J.A. Wolf, Fine Structure of Hermitian Symmetric Spaces. In: W.M. Boothby - G.L. Weiss (eds.), Symmetric Spaces. Pure and Applied Mathematics, 8, Marcel Dekker Inc., New York 1972, 271- 357. | MR | Zbl

[24] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras. North-Holland 1985. | MR | Zbl