Bounded symmetric domains and derived geometric structures
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Every homogeneous circular convex domain $D \subset \mathbb{C}^{n}$ (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group $G = Aut(D)$ of all biholomorphic automorphisms of $D$ and its isotropy subgroup $K \subset GL(n,\mathbb{C})$ at the origin (a maximal compact subgroup of $G$). The group $G$ acts in a natural way on the compact dual $X$ of $D$ (a certain compactification of $\mathbb{C}^{n}$ that generalizes the Riemann sphere in case $D$ is the unit disk in $\mathbb{C}$). Various authors have studied the orbit structure of the $G$-space $X$, here we are interested in the Cauchy-Riemann structure of the $G$-orbits in $X$ (which in general are only real-analytic submanifolds of $X$). Also, we discuss certain $K$-orbits in the Grassmannian of all linear subspaces of $\mathbb{C}^{n}$ that are closely related to the geometry of the bounded symmetric domain $D$.
@article{RLIN_2002_9_13_3-4_a6,
author = {Kaup, Wilhelm},
title = {Bounded symmetric domains and derived geometric structures},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {243--257},
year = {2002},
volume = {Ser. 9, 13},
number = {3-4},
zbl = {1098.32008},
mrnumber = {MR1984104},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/}
}
TY - JOUR AU - Kaup, Wilhelm TI - Bounded symmetric domains and derived geometric structures JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 243 EP - 257 VL - 13 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/ LA - en ID - RLIN_2002_9_13_3-4_a6 ER -
%0 Journal Article %A Kaup, Wilhelm %T Bounded symmetric domains and derived geometric structures %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 243-257 %V 13 %N 3-4 %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/ %G en %F RLIN_2002_9_13_3-4_a6
Kaup, Wilhelm. Bounded symmetric domains and derived geometric structures. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 243-257. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a6/