Contact and conformal maps on Iwasawa N groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
The action of the conformal group $O(1,n + 1)$ on $\mathbb{R}^{n} \cup \{\infty\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^{4}$ map between domains $U$ and $V$ in $\mathbb{R}^{n}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb{R})$ or $Sp(2,\mathbb{R})$ and $P$ is a minimal parabolic subgroup.
@article{RLIN_2002_9_13_3-4_a4,
author = {Cowling, Michael and De Mari, Filippo and Kor\'anyi, Adam and Reimann, Hans Martin},
title = {Contact and conformal maps on {Iwasawa} {N} groups},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {219--232},
publisher = {mathdoc},
volume = {Ser. 9, 13},
number = {3-4},
year = {2002},
zbl = {1225.22012},
mrnumber = {MR1984102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/}
}
TY - JOUR AU - Cowling, Michael AU - De Mari, Filippo AU - Korányi, Adam AU - Reimann, Hans Martin TI - Contact and conformal maps on Iwasawa N groups JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 219 EP - 232 VL - 13 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/ LA - en ID - RLIN_2002_9_13_3-4_a4 ER -
%0 Journal Article %A Cowling, Michael %A De Mari, Filippo %A Korányi, Adam %A Reimann, Hans Martin %T Contact and conformal maps on Iwasawa N groups %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 219-232 %V 13 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/ %G en %F RLIN_2002_9_13_3-4_a4
Cowling, Michael; De Mari, Filippo; Korányi, Adam; Reimann, Hans Martin. Contact and conformal maps on Iwasawa N groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/