Contact and conformal maps on Iwasawa N groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The action of the conformal group $O(1,n + 1)$ on $\mathbb{R}^{n} \cup \{\infty\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^{4}$ map between domains $U$ and $V$ in $\mathbb{R}^{n}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb{R})$ or $Sp(2,\mathbb{R})$ and $P$ is a minimal parabolic subgroup.
@article{RLIN_2002_9_13_3-4_a4,
     author = {Cowling, Michael and De Mari, Filippo and Kor\'anyi, Adam and Reimann, Hans Martin},
     title = {Contact and conformal maps on {Iwasawa} {N} groups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {219--232},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1225.22012},
     mrnumber = {1809879},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/}
}
TY  - JOUR
AU  - Cowling, Michael
AU  - De Mari, Filippo
AU  - Korányi, Adam
AU  - Reimann, Hans Martin
TI  - Contact and conformal maps on Iwasawa N groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 219
EP  - 232
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/
LA  - en
ID  - RLIN_2002_9_13_3-4_a4
ER  - 
%0 Journal Article
%A Cowling, Michael
%A De Mari, Filippo
%A Korányi, Adam
%A Reimann, Hans Martin
%T Contact and conformal maps on Iwasawa N groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 219-232
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/
%G en
%F RLIN_2002_9_13_3-4_a4
Cowling, Michael; De Mari, Filippo; Korányi, Adam; Reimann, Hans Martin. Contact and conformal maps on Iwasawa N groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 219-232. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a4/

[1] W. Bertram, The geometry of Jordan and Lie structures. Lecture Notes in Math., vol. 1754, Springer-Verlag, Berlin-Heidelberg-New York 2001. | DOI | MR | Zbl

[2] W. Bertram - J. Hilgert, Characterization of the Kantor-Koecher-Tits algebra by a generalized Ahlfors operator. J. Lie Theory, vol. 11, n. 2, 2001, 415-426. | fulltext EuDML | MR | Zbl

[3] F.W. Gehring, Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., vol. 103, 1962, 353-393. | MR | Zbl

[4] S. Gindikin - S. Kaneyuki, On the automorphism group of the generalized conformal structure of a symmetric $R$-space. Differential Geom. Appl., vol. 8, n. 1, 1998, 21-33. | DOI | MR | Zbl

[5] A.B. Goncharov, Generalized conformal structures on manifolds. Selected translations. Selecta Math. Soviet., vol. 6, n. 4, 1987, 307-340. | MR | Zbl

[6] A. Korányi - H.M. Reimann, Quasiconformal mappings on the Heisenberg group. Invent. Math., vol. 80, n. 2, 1985, 309-338. | fulltext EuDML | DOI | MR | Zbl

[7] R. Nevanlinna, On differentiable mappings. In: R. Nevanlinna et al. (eds.), Analytic functions. Princeton Math. Series, 24, Princeton Univ. Press, Princeton, N.J. 1960, 3-9. | MR | Zbl

[8] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), vol. 129, n. 1, 1989, 1-60. | DOI | MR | Zbl

[9] N. Tanaka, On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ., vol. 10, 1970, 1-82. | fulltext mini-dml | MR | Zbl

[10] K. Yamaguchi, Differential systems associated with simple graded Lie algebras. In: Progress in differential geometry. Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo 1993, 413-494. | MR | Zbl