A triple ratio on the Silov boundary of a bounded symmetric domain
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 209-217.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $D$ be a Hermitian symmetric space of tube type, $S$ its Silov boundary and $G$ the neutral component of the group of bi-holomorphic diffeomorphisms of $D$. Our main interest is in studying the action of $G$ on $S^{3} = S \times S \times S$. Sections 1 and 2 are part of a joint work with B. Ørsted (see [4]). In Section 1, as a pedagogical introduction, we study the case where $D$ is the unit disc and $S$ is the circle. This is a fairly elementary and explicit case, where one can easily get a flavour of the more general results. In Section 2, we study the case of tube type domains, for which we show that there is a finite number of open $G$-orbits in $S^{3}$, and to each orbit we associate an integer, called the Maslov index. In the special case where $D$ is the Siegel disc, then $G$ is (isomorphic to) the symplectic group and $S$ is the manifold of Lagrangian subspaces. The result on the orbits and the number which we construct coincides with the classical theory of the Maslov index (see e.g. [7]), hence the name. We describe a formula for computing the Maslov index, using the automorphy kernel of the domain $D$. In the special case of the Lagrangian manifold, this formula was obtained by Magneron [8] in a different approach. In Section 3, we study the case where $D$ is the unit ball in a (rectangular) matrix space. There is now an infinite family of orbits, and we construct characteristic invariants for the action of $G$ on $S^{3}$. For the special case where $D$ is the unit ball in $\mathbb{C}^{2}$, this coincides with an invariant constructed by E. Cartan for the «hypersphere» (see [2]). In all cases, we follow the following method: from an appropriate automorphy kernel for $D$ we construct a kernel on $D \times D \times D$, satisfying a simple transformation property under the action of $G$. We then define a dense open set of $S^{3}$ (the set of mutually transversal points in $S$), on which the kernel (or some function of it) can be extended continuously, and the resulting kernel is invariant or at least transforms nicely under the action of $G$.
@article{RLIN_2002_9_13_3-4_a3,
     author = {Clerc, Jean-Louis},
     title = {A triple ratio on the {Silov} boundary of a bounded symmetric domain},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {209--217},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {3-4},
     year = {2002},
     zbl = {1225.32016},
     mrnumber = {1414541},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a3/}
}
TY  - JOUR
AU  - Clerc, Jean-Louis
TI  - A triple ratio on the Silov boundary of a bounded symmetric domain
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 209
EP  - 217
VL  - 13
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a3/
LA  - en
ID  - RLIN_2002_9_13_3-4_a3
ER  - 
%0 Journal Article
%A Clerc, Jean-Louis
%T A triple ratio on the Silov boundary of a bounded symmetric domain
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 209-217
%V 13
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a3/
%G en
%F RLIN_2002_9_13_3-4_a3
Clerc, Jean-Louis. A triple ratio on the Silov boundary of a bounded symmetric domain. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 3-4, pp. 209-217. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_3-4_a3/

[1] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan. Bull. Math. Soc. France, 124, 1996, 299-327. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] E. Cartan, Sur le groupe de la géométrie hypersphérique. Comm. Math. Helv., 4, 1932, 158-171. | fulltext EuDML | DOI | MR | Zbl

[3] J.-L. Clerc, A triple ratio on the unitary Stiefel manifold. L’Enseignement Mathématique, to appear. | MR | Zbl

[4] J.-L. Clerc - B. Ørsted, The Maslov index revisited. Transformation Groups, to appear. | Zbl

[5] J. Faraut - A. Korányi, Analysis on symmetric cones. Oxford Mathematical Monographs, Clarendon Press, Oxford 1994. | MR | Zbl

[6] A. Korányi - H.M. Reimann, The complex cross ratio on the Heisenberg group. L’Ens. Math., 33, 1987, 291-300. | MR | Zbl

[7] G. Lion - M. Vergne, The Weil representation, Maslov index and Theta series. Progress in Mathematics, 6, Birkhäuser, Boston 1980. | MR | Zbl

[8] B. Magneron, Spineurs symplectiques purs et indice de Maslov de plans lagrangiens positifs. J. Funct. Anal., 59, 1984, 90-122. | DOI | MR | Zbl

[9] I. Satake, Algebraic structures of symmetric domains. Kanô Memorial Lectures, 4, Iwanami Shoten and Princeton University Press, Princeton 1980. | MR | Zbl

[10] D. Toledo, Representations of surface groups in complex hyperbolic space. J. of Diff. Geom., 29, 1989, 125-133. | fulltext mini-dml | MR | Zbl