Three cylinder inequalities and unique continuation properties for parabolic equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 107-120
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove the following unique continuation property. Let $u$ be a solution of a second order linear parabolic equation and $S$ a segment parallel to the $t$-axis. If $u$ has a zero of order faster than any non constant and time independent polynomial at each point of $S$ then $u$ vanishes in each point, $(x,t^{\prime})$, such that the plane $t = t^{\prime}$ has a non empty intersection with $S$.
@article{RLIN_2002_9_13_2_a5,
author = {Vessella, Sergio},
title = {Three cylinder inequalities and unique continuation properties for parabolic equations},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {107--120},
year = {2002},
volume = {Ser. 9, 13},
number = {2},
zbl = {1221.35181},
mrnumber = {MR1949484},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/}
}
TY - JOUR AU - Vessella, Sergio TI - Three cylinder inequalities and unique continuation properties for parabolic equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 107 EP - 120 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/ LA - en ID - RLIN_2002_9_13_2_a5 ER -
%0 Journal Article %A Vessella, Sergio %T Three cylinder inequalities and unique continuation properties for parabolic equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 107-120 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/ %G en %F RLIN_2002_9_13_2_a5
Vessella, Sergio. Three cylinder inequalities and unique continuation properties for parabolic equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 107-120. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/