Three cylinder inequalities and unique continuation properties for parabolic equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 107-120.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove the following unique continuation property. Let $u$ be a solution of a second order linear parabolic equation and $S$ a segment parallel to the $t$-axis. If $u$ has a zero of order faster than any non constant and time independent polynomial at each point of $S$ then $u$ vanishes in each point, $(x,t^{\prime})$, such that the plane $t = t^{\prime}$ has a non empty intersection with $S$.
Dimostriamo la seguente propriet`a di continuazione unica. Sia $u$ una soluzione di un’equazione parabolica lineare del secondo ordine e $S$ un segmento parallelo all’asse $t$. Se $u$ ha uno zero di ordine maggiore di qualsiasi polinomio non costante e indipendente dal tempo allora $u$ si annulla in ogni punto, $(x,t^{\prime})$, tale che il piano $t = t^{\prime}$ intersechi $S$.
@article{RLIN_2002_9_13_2_a5,
     author = {Vessella, Sergio},
     title = {Three cylinder inequalities and unique continuation properties for parabolic equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {107--120},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {2},
     year = {2002},
     zbl = {1221.35181},
     mrnumber = {1466583},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/}
}
TY  - JOUR
AU  - Vessella, Sergio
TI  - Three cylinder inequalities and unique continuation properties for parabolic equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 107
EP  - 120
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/
LA  - en
ID  - RLIN_2002_9_13_2_a5
ER  - 
%0 Journal Article
%A Vessella, Sergio
%T Three cylinder inequalities and unique continuation properties for parabolic equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 107-120
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/
%G en
%F RLIN_2002_9_13_2_a5
Vessella, Sergio. Three cylinder inequalities and unique continuation properties for parabolic equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 107-120. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a5/

[1] V. Adolfsson - L. Escauriaza, $C^{1,\alpha}$ domains and unique continuation at the boundary. Comm. Pure Appl. Math., L, 1997, 935-969. | DOI | MR | Zbl

[2] N. Aronszajn - A. Krzywicki - J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifold. Ark. for Matematik, 4, (34), 1962, 417-453. | MR | Zbl

[3] B. Canuto - E. Rosset - S. Vessella, Quantitative estimates of unique continuation for parabolic equations and inverse-initial boundary value problems with unknown boundaries. Transactions of AMS, to appear. | DOI | MR | Zbl

[4] B. Canuto - E. Rosset - S. Vessella, A stability result in the localization of cavities in a thermic conducting medium. Preprint n. 59, 2001, Laboratoire de Mathématiques Appliquées, Université de Versailles. | fulltext mini-dml | DOI | MR | Zbl

[5] Dè-Yuan' Li, An inequality for the parabolic operator. Sci. Sinica, 12, 1963, 1425-1467. | MR

[6] R.Ja. Glagoleva, Some properties of solutions of a linear second order parabolic equation. Math. USSR-Sbornik, 3 (1), 1967, 41-67. | Zbl

[7] L. Hörmander, Uniqueness theorem for second order elliptic differential equations. Comm. Part. Diff. Equations, 8 (1), 1983, 21-64. | Zbl

[8] M. Lees - M.H. Protter, Unique continuation for parabolic equations. Duke Math. J., 28, 1961, 369-382. | fulltext mini-dml | fulltext mini-dml | MR | Zbl

[9] F.H. Lin, A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math., XLIII, 1990, 127-136. | DOI | MR | Zbl

[10] A.A. Varin, Three-Cylinder theorem for certain class of semilinear parabolic equations. Mat. Zametki, 51, (1), 1992, 32-41. | DOI | MR | Zbl

[11] S. Vessella, Carleman estimates, optimal three cylinder inequality and unique continuation properties for solutions to parabolic equations. Quaderno DiMaD, novembre 2001, 1-12. | Zbl