Morse index and blow-up points of solutions of some nonlinear problems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 101-105
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this Note we consider the following problem $$
\begin{cases}
- \triangle u = N(N-2) u^{p_{\epsilon}} - \lambda u \, \text{in } \Omega \\
u > 0 \text{in } \Omega \\
u = 0 \text{on } \partial \Omega.
\end{cases}
$$ where $\Omega$ is a bounded smooth starshaped domain in $\mathbb{R}^{N}$, $N \ge 3$, $p_{\epsilon} = \frac{N+2}{N-2} - \epsilon$, $\epsilon > 0$, and $\lambda \ge 0$. We prove that if $u_{\epsilon}$ is a solution of Morse index $m > 0$ than $u_{\epsilon}$ cannot have more than $m$ maximum points in $\Omega$ for $\epsilon$ sufficiently small. Moreover if $\Omega$ is convex we prove that any solution of index one has only one critical point and the level sets are starshaped for $\epsilon$ sufficiently small.
@article{RLIN_2002_9_13_2_a4,
author = {El Mehdi, Khalil and Pacella, Filomena},
title = {Morse index and blow-up points of solutions of some nonlinear problems},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {101--105},
year = {2002},
volume = {Ser. 9, 13},
number = {2},
zbl = {1221.35145},
mrnumber = {MR1949483},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a4/}
}
TY - JOUR AU - El Mehdi, Khalil AU - Pacella, Filomena TI - Morse index and blow-up points of solutions of some nonlinear problems JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 101 EP - 105 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a4/ LA - en ID - RLIN_2002_9_13_2_a4 ER -
%0 Journal Article %A El Mehdi, Khalil %A Pacella, Filomena %T Morse index and blow-up points of solutions of some nonlinear problems %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 101-105 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a4/ %G en %F RLIN_2002_9_13_2_a4
El Mehdi, Khalil; Pacella, Filomena. Morse index and blow-up points of solutions of some nonlinear problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 101-105. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a4/