Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 77-84

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) $O(µ)$-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time $T_{d} = O((1/ \mu) \log(1/ \mu))$ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time $T_{d}$ is optimal as a consequence of a general stability result proved via classical perturbation theory.
@article{RLIN_2002_9_13_2_a1,
     author = {Berti, Massimiliano and Biasco, Luca and Bolle, Philippe},
     title = {Optimal stability and instability results for a class of nearly integrable {Hamiltonian} systems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {2},
     year = {2002},
     zbl = {1072.37060},
     mrnumber = {MR1949480},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/}
}
TY  - JOUR
AU  - Berti, Massimiliano
AU  - Biasco, Luca
AU  - Bolle, Philippe
TI  - Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 77
EP  - 84
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/
LA  - en
ID  - RLIN_2002_9_13_2_a1
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%A Biasco, Luca
%A Bolle, Philippe
%T Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 77-84
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/
%G en
%F RLIN_2002_9_13_2_a1
Berti, Massimiliano; Biasco, Luca; Bolle, Philippe. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 77-84. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/