Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2002_9_13_2_a1, author = {Berti, Massimiliano and Biasco, Luca and Bolle, Philippe}, title = {Optimal stability and instability results for a class of nearly integrable {Hamiltonian} systems}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {77--84}, publisher = {mathdoc}, volume = {Ser. 9, 13}, number = {2}, year = {2002}, zbl = {1072.37060}, mrnumber = {1614571}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/} }
TY - JOUR AU - Berti, Massimiliano AU - Biasco, Luca AU - Bolle, Philippe TI - Optimal stability and instability results for a class of nearly integrable Hamiltonian systems JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2002 SP - 77 EP - 84 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/ LA - en ID - RLIN_2002_9_13_2_a1 ER -
%0 Journal Article %A Berti, Massimiliano %A Biasco, Luca %A Bolle, Philippe %T Optimal stability and instability results for a class of nearly integrable Hamiltonian systems %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2002 %P 77-84 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/ %G en %F RLIN_2002_9_13_2_a1
Berti, Massimiliano; Biasco, Luca; Bolle, Philippe. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 77-84. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/
[1] Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré - Analyse Non Lineaire, v. 15, n. 2, 1998, 233-252. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl
- ,[2] Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. | Zbl
,[3] Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Rend. Mat. Acc. Lincei, s. 9, v. 11, 2000, 235-243. | fulltext bdim | fulltext mini-dml | MR | Zbl
- ,[4] A functional analysis approach to Arnold’s diffusion. Ann. Inst. Henri Poincaré, Analyse Non Lineaire, to appear. | fulltext EuDML | fulltext mini-dml | Zbl
- ,[5] Fast Arnold’s diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, series A, v. 8, n. 3, july 2002, 795-811. | DOI | MR | Zbl
- ,[6] Drift in phase space: a new variational mechanism with optimal diffusion time. SISSA 2002, preprint. | fulltext mini-dml | DOI | MR | Zbl
- - ,[7] An approach to Arnold diffusion through the calculus of variations. Nonlinear Analysis T. M. A., 26, 1996, 1115-1135. | DOI | MR | Zbl
,[8] Upper Bounds on Arnold Diffusion Time via Mather theory. J. Math. Pures Appl., v. 80, 1, 2001, 105-129. | DOI | MR | Zbl
- - ,[9] On the stability of some properly-degenerate Hamiltonian systems. Discrete and Continuous Dynamical Systems, series A, to appear. | MR | Zbl
- ,[10] On the distribution of free path lengths for periodic Lorentz gas. Comm. Math. Phys., v. 190, 1998, 491-508. | DOI | MR | Zbl
- - ,[11] Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, section Physique Théorique, 60, 1994, 1-144; see also Erratum in v. 68, 1998, 135. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[12] The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, v. 7, n. 4, 2001, 787-800. | DOI | MR | Zbl
,[13] Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, to appear. | MR | Zbl
- ,[14] Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, v. 64, 1995, 205-252. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[15] An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Mathematical Survey, 32, 1977. | MR | Zbl
,[16] Nekhoroshev estimates for quasi-convex Hamiltonian Systems. Math. Zeitschrift, 213, 1993, 187-216. | fulltext EuDML | DOI | MR | Zbl
,