Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 77-84.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) $O(µ)$-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time $T_{d} = O((1/ \mu) \log(1/ \mu))$ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time $T_{d}$ is optimal as a consequence of a general stability result proved via classical perturbation theory.
In questa Nota consideriamo sistemi Hamiltoniani quasi-integrabili, non-isocroni, a-priori instabili soggetti ad una perturbazione di ordine $\mu$ (un polinomio trigonometrico) che non preserva i tori imperturbati. Facendo uso di tecniche variazionali che NON richiedono l’esistenza di «catene di tori KAM di transizione», dimostriamo l’esistenza di orbite di diffusione con un tempo di diffusione $T_{d} = O((1/ \mu) \log(1/ \mu))$. Proviamo inoltre che la nostra stima sul tempo di diffusione è ottimale, a seguito di un risultato generale di stabilità per le variabili di azione dimostrato mediante la teoria classica delle perturbazioni.
@article{RLIN_2002_9_13_2_a1,
     author = {Berti, Massimiliano and Biasco, Luca and Bolle, Philippe},
     title = {Optimal stability and instability results for a class of nearly integrable {Hamiltonian} systems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {Ser. 9, 13},
     number = {2},
     year = {2002},
     zbl = {1072.37060},
     mrnumber = {1614571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/}
}
TY  - JOUR
AU  - Berti, Massimiliano
AU  - Biasco, Luca
AU  - Bolle, Philippe
TI  - Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2002
SP  - 77
EP  - 84
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/
LA  - en
ID  - RLIN_2002_9_13_2_a1
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%A Biasco, Luca
%A Bolle, Philippe
%T Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2002
%P 77-84
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/
%G en
%F RLIN_2002_9_13_2_a1
Berti, Massimiliano; Biasco, Luca; Bolle, Philippe. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 13 (2002) no. 2, pp. 77-84. http://geodesic.mathdoc.fr/item/RLIN_2002_9_13_2_a1/

[1] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré - Analyse Non Lineaire, v. 15, n. 2, 1998, 233-252. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[2] V.I. Arnold, Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. | Zbl

[3] M. Berti - P. Bolle, Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Rend. Mat. Acc. Lincei, s. 9, v. 11, 2000, 235-243. | fulltext bdim | fulltext mini-dml | MR | Zbl

[4] M. Berti - P. Bolle, A functional analysis approach to Arnold’s diffusion. Ann. Inst. Henri Poincaré, Analyse Non Lineaire, to appear. | fulltext EuDML | fulltext mini-dml | Zbl

[5] M. Berti - P. Bolle, Fast Arnold’s diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, series A, v. 8, n. 3, july 2002, 795-811. | DOI | MR | Zbl

[6] M. Berti - L. Biasco - P. Bolle, Drift in phase space: a new variational mechanism with optimal diffusion time. SISSA 2002, preprint. | fulltext mini-dml | DOI | MR | Zbl

[7] U. Bessi, An approach to Arnold diffusion through the calculus of variations. Nonlinear Analysis T. M. A., 26, 1996, 1115-1135. | DOI | MR | Zbl

[8] U. Bessi - L. Chierchia - E. Valdinoci, Upper Bounds on Arnold Diffusion Time via Mather theory. J. Math. Pures Appl., v. 80, 1, 2001, 105-129. | DOI | MR | Zbl

[9] L. Biasco - L. Chierchia, On the stability of some properly-degenerate Hamiltonian systems. Discrete and Continuous Dynamical Systems, series A, to appear. | MR | Zbl

[10] J. Bourgain - F. Golse - B. Wennberg, On the distribution of free path lengths for periodic Lorentz gas. Comm. Math. Phys., v. 190, 1998, 491-508. | DOI | MR | Zbl

[11] L. Chierchia - G. Gallavotti, Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, section Physique Théorique, 60, 1994, 1-144; see also Erratum in v. 68, 1998, 135. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] J. Cresson, The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, v. 7, n. 4, 2001, 787-800. | DOI | MR | Zbl

[13] J. Cresson - C. Guillet, Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, to appear. | MR | Zbl

[14] J.P. Marco, Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, v. 64, 1995, 205-252. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[15] N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Mathematical Survey, 32, 1977. | MR | Zbl

[16] J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian Systems. Math. Zeitschrift, 213, 1993, 187-216. | fulltext EuDML | DOI | MR | Zbl