Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 4, pp. 199-203.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present critical groups estimates for a functional $f$ defined on the Banach space $W^{1,p}_{0}(\Omega)$, $\Omega$ bounded domain in $\mathbb{R}^{N}$, $2 p \infty$, associated to a quasilinear elliptic equation involving $p$-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of $f$ in each critical point, we compute the critical groups of $f$ in each isolated critical point via Morse index.
Presentiamo stime di gruppi critici per un funzionale $f$ definito sullo spazio di Banach $W^{1,p}_{0}(\Omega)$, $\Omega$ dominio limitato in $\mathbb{R}^{N}$, $2 p \infty$, associato a una equazione ellittica che coinvolge il $p$-laplaciano. Nonostante la mancanza di una struttura di Hilbert e di proprietà di Fredholm del differenziale secondo di $f$ nei punti critici, valutiamo i gruppi critici di $f$ in ogni punto critico isolato mediante l’indice di Morse.
@article{RLIN_2001_9_12_4_a0,
     author = {Cingolani, Silvia and Vannella, Giuseppina},
     title = {Some results on critical groups for a class of functionals defined on {Sobolev} {Banach} spaces},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {199--203},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {4},
     year = {2001},
     zbl = {1072.58005},
     mrnumber = {1785469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a0/}
}
TY  - JOUR
AU  - Cingolani, Silvia
AU  - Vannella, Giuseppina
TI  - Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 199
EP  - 203
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a0/
LA  - en
ID  - RLIN_2001_9_12_4_a0
ER  - 
%0 Journal Article
%A Cingolani, Silvia
%A Vannella, Giuseppina
%T Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 199-203
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a0/
%G en
%F RLIN_2001_9_12_4_a0
Cingolani, Silvia; Vannella, Giuseppina. Some results on critical groups for a class of functionals defined on Sobolev Banach spaces. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 4, pp. 199-203. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_4_a0/

[1] V. Benci - P. D'Avenia - D. Fortunato - L. Pisani, Solitons in several space dimensions: a Derrick's problem and infinitely many solutions. Arch. Rational Mech. Anal., 154, 2000, 297-324. | DOI | MR | Zbl

[2] K. Chang, Morse Theory on Banach space and its applications to partial differential equations. Chin. Ann. of Math., 4B, 1983, 381-399. | MR | Zbl

[3] K. Chang, Morse theory in nonlinear analysis. In: A. Ambrosetti - K.C. Chang - I. Ekeland (eds.), Nonlinear Functional Analysis and Applications to Differential Equations. World Scientific, Singapore 1998. | MR | Zbl

[4] S. Cingolani - G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index. To appear. | fulltext mini-dml | DOI | MR | Zbl

[5] J.N. Corvellec - M. Degiovanni, Nontrivial solutions of quasilinear equations via nonsmooth Morse theory. J. Diff. Eqs., 136, 1997, 268-293. | DOI | MR | Zbl

[6] S. Lancelotti, Morse index estimates for continuous functionals associated with quasilinear elliptic equations. Dip. Mat. Politecnico Torino 14/1999. | Zbl

[7] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eqs., 51, 1984, 126-150. | DOI | MR | Zbl

[8] P. Tolksdorf, On the Dirichlet problem for a quasilinear equations in domains with conical boundary points. Comm. Part. Diff. Eqs., 8, 1983, 773-817. | DOI | MR | Zbl

[9] A.J. Tromba, A general approach to Morse theory. J. Diff. Geometry, 12, 1977, 47-85. | fulltext mini-dml | MR | Zbl

[10] K. Uhlenbeck, Morse theory on Banach manifolds. J. Funct. Anal., 10, 1972, 430-445. | MR | Zbl