Stability of finite element mixed interpolations for contact problems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 3, pp. 167-183

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.
@article{RLIN_2001_9_12_3_a2,
     author = {Bathe, Klaus J\"urgen and Brezzi, Franco},
     title = {Stability of finite element mixed interpolations for contact problems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {167--183},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {3},
     year = {2001},
     zbl = {1097.74054},
     mrnumber = {MR1898458},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/}
}
TY  - JOUR
AU  - Bathe, Klaus Jürgen
AU  - Brezzi, Franco
TI  - Stability of finite element mixed interpolations for contact problems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 167
EP  - 183
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/
LA  - en
ID  - RLIN_2001_9_12_3_a2
ER  - 
%0 Journal Article
%A Bathe, Klaus Jürgen
%A Brezzi, Franco
%T Stability of finite element mixed interpolations for contact problems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 167-183
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/
%G en
%F RLIN_2001_9_12_3_a2
Bathe, Klaus Jürgen; Brezzi, Franco. Stability of finite element mixed interpolations for contact problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 3, pp. 167-183. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/