Stability of finite element mixed interpolations for contact problems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 3, pp. 167-183.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the formulation of contact problems using a Lagrange multiplier to enforce the contact no-penetration constraint. The finite element discretization of the formulation must satisfy stability conditions which include an inf-sup condition. To identify which finite element interpolations in the contact constraint lead to stable (and optimal) numerical solutions we focus on the finite element discretization and solution of a «simple» model problem. While a simple problem to avoid the need for technicalities, the analysis of the finite element discretizations to solve the problem gives valuable insight and allows quite general conclusions on the use of different interpolation schemes.
Si considera il problema del contatto senza penetrazione di due corpi elastici, usando la tecnica dei moltiplicatori di Lagrange per il trattamento del vincolo unilaterale. La discretizzazione con elementi finiti di tale problema deve soddisfare opportune condizioni di stabilità, che includono una condizione di inf-sup. Per identificare la tipologia degli elementi finiti che possono portare a schemi discretizzati stabili (ed ottimali) ci concentriamo sulla discretizzazione di un problema modello «semplice». Tale scelta permette di evitare un certo numero di tecnicismi, pur fornendo valide indicazioni sulle scelte da operare in contesti molto più generali.
@article{RLIN_2001_9_12_3_a2,
     author = {Bathe, Klaus J\"urgen and Brezzi, Franco},
     title = {Stability of finite element mixed interpolations for contact problems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {167--183},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {3},
     year = {2001},
     zbl = {1097.74054},
     mrnumber = {913962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/}
}
TY  - JOUR
AU  - Bathe, Klaus Jürgen
AU  - Brezzi, Franco
TI  - Stability of finite element mixed interpolations for contact problems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 167
EP  - 183
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/
LA  - en
ID  - RLIN_2001_9_12_3_a2
ER  - 
%0 Journal Article
%A Bathe, Klaus Jürgen
%A Brezzi, Franco
%T Stability of finite element mixed interpolations for contact problems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 167-183
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/
%G en
%F RLIN_2001_9_12_3_a2
Bathe, Klaus Jürgen; Brezzi, Franco. Stability of finite element mixed interpolations for contact problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 3, pp. 167-183. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_3_a2/

[1] N. El-Abbasi - K.J. Bathe, Stability and Patch Test Performance of Contact Discretizations. Submitted to Computers & Structures.

[2] C. Baiocchi - G. Buttazzo - F. Gastaldi - F. Tomarelli, General Existence Theorems for Unilateral Problems in Continuum Mechanics. Arch. Rational Mech. Anal., 100, 1988, 149-189. | DOI | MR | Zbl

[3] C. Baiocchi - A. Capelo, Variational and Quasivariational Inequalities. J. Wiley and Sons, Chichester 1984. | MR | Zbl

[4] K.J. Bathe, Finite Element Procedures. Prentice Hall, 1996. | Zbl

[5] K.J. Bathe, The Inf-Sup Condition and its Evaluation for Mixed Finite Element Methods. Computers & Structures, 79, 2001, 243-252 and 971. | DOI | MR

[6] K.J. Bathe (ed.), Computational Fluid and Solid Mechanics. Elsevier, 2001. | Zbl

[7] H. Brezis, Problèmes unilateraux. J. Math. Pures Appl., 51, 1972, 1-168. | MR | Zbl

[8] F. Brezzi - K.J. Bathe, A Discourse on the Stability Conditions for Mixed Finite Element Formulations. Computer Methods in Applied Mechanics and Engineering, 82, 1990, 27-57. | DOI | MR | Zbl

[9] F. Brezzi - M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991. | DOI | MR | Zbl

[10] F. Brezzi - W.W. Hager - P.-A. Raviart, Error Estimates for the Finite Element Solution of Variational Inequalities. Part II Mixed Methods. Numer. Math., 31, 1978, 1-16. | fulltext EuDML | DOI | MR | Zbl

[11] Ph.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, 1978. | MR | Zbl

[12] G. Duvaut - J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, 1976. | MR | Zbl

[13] G. Fichera, Unilateral Constraints in Elasticity. In: Actes du Congrès International des Mathématiciens (Nice, Paris 1970), 3, Gauthier-Villars, septembre 1971, vol. 3, 79-84. | MR | Zbl

[14] M. Fortin, An Analysis of Convergence of the Mixed Finite Element Method. RAIRO Analyse Numérique, 11, 1997, 341-354. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[15] N. Kikuchi - J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied mathematics, 8, 1988. | MR | Zbl

[16] D. Kinderlehrer - G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, 1980. | MR | Zbl

[17] J.L. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications. Vol. 1, Springer-Verlag, 1972. | Zbl

[18] R. Stenberg, A Family of Mixed Finite Elements for the Elasticity Problem. Numer. Math., 53, 1988, 513-538. | fulltext EuDML | DOI | MR | Zbl

[19] O. Widlund, An Extension Theorem for Finite Element Spaces with three Applications. In: W. Hackbush - K. Witsch (eds.), Numerical Techniques in Continuum Mechanics. Vieweg & Sohn, 1987. | Zbl