Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2001_9_12_2_a4, author = {Lascialfari, Francesca and Montanari, Annamaria}, title = {Smooth regularity for solutions of the {Levi} {Monge-Amp\`ere} equation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {115--123}, publisher = {mathdoc}, volume = {Ser. 9, 12}, number = {2}, year = {2001}, zbl = {1097.35061}, mrnumber = {1653050}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a4/} }
TY - JOUR AU - Lascialfari, Francesca AU - Montanari, Annamaria TI - Smooth regularity for solutions of the Levi Monge-Ampère equation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2001 SP - 115 EP - 123 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a4/ LA - en ID - RLIN_2001_9_12_2_a4 ER -
%0 Journal Article %A Lascialfari, Francesca %A Montanari, Annamaria %T Smooth regularity for solutions of the Levi Monge-Ampère equation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2001 %P 115-123 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a4/ %G en %F RLIN_2001_9_12_2_a4
Lascialfari, Francesca; Montanari, Annamaria. Smooth regularity for solutions of the Levi Monge-Ampère equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a4/
[1] On the regularity of the Complex Monge-Ampère operator. In: Kang-Tae Kim - S.G. Krantz (eds.), Complex geometric analysis in Pohang. POSTECH-BSRI SNU-GARC, International conference on Several complex variables (Pohang, Korea, June 23–27, 1997). Providence, RI: American Mathematical Society, Contemp. Math., 222, 1999, 181-189. | DOI | MR | Zbl
,[2] The Dirichlet problem for non-linear second order elliptic equations II: Complex Monge-Ampère and uniformly elliptic equations. Comm. Pure Appl. Math., 38, 1985, 209-252. | DOI | MR | Zbl
- - - ,[3] $\mathcal{C}^{\infty}$ regularity of solutions of a quasilinear equation related to the Levi operator. Ann. Scuola Norm. Sup. di Pisa Cl. Sci., s. 4, v. XXIII, 1996, 483-529. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[4] $\mathcal{C}^{\infty}$ regularity of solutions of the Levi equation. Ann. Inst. H. Poincaré, Anal. non Linéaire, 15, 4, 1998, 517-534. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl
,[5] On the smoothness of viscosity solutions of the prescribed Levi-curvature equation. Rend. Mat. Acc. Lincei, s. 9, v. 10, 1999, 61-68. | fulltext bdim | MR | Zbl
- - ,[6] Strong solutions for the Levi curvature equation. Adv. in Diff. Eq., v. 5, 1-3, 2000, 323-342. | MR | Zbl
- ,[7] Regularity properties of Levi flat graphs. C.R. Acad. Sci. Paris, t. 329, s. 1, 1999, 1049-1054. | DOI | MR | Zbl
- ,[8] $\mathcal{C}^{\infty}$ regularity of solutions of an equation of Levi’s type in $\mathbb{R}^{2n+1}$. Ann. Mat. Pura Appl., to appear. | DOI | MR | Zbl
- ,[9] Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations. Preprint. | DOI | MR | Zbl
- ,[10] Elliptic partial differential equations of second order. Grundlehrer der Math. Wiss., vol. 224, Springer-Verlag, New York 1977. | MR | Zbl
- ,[11] Balls and metrics defined by vector fields I: basic properties. Acta Math., 155, 1985, 103-147. | DOI | MR | Zbl
- - ,[12] The Levi equation in higher dimension and relationships to the envelope of holomorphy. American Journal of Mathematics, 116, 1994, 479-499. | DOI | MR | Zbl
- ,[13] Weak solutions for the Levi equation and Envelope of Holomorphy. J. Funct. Anal., 101, n. 4, 1991, 392-407. | DOI | MR | Zbl
- ,[14] Geometric Properties of Solutions of the Levi equation. Ann. Mat. Pura Appl., 4, 152, 1988, 331-344. | DOI | MR | Zbl
,[15] Regularity for Quasilinear Second-Order Subelliptic Equations. Comm. Pure and Appl. Math., 45, 1992, 77-96. | DOI | MR | Zbl
,