Some properties of Carnot-Carathéodory balls in the Heisenberg group
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 155-167.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we prove that: 1. $|\nabla_{\mathbb{H}^{n}} d(z,t)| = 1$ in the classical sense for all $(z,t) \in \mathbb{H}^{n}$ with $z \neq 0$, where $d$ is the distance from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.
Usando la rappresentazione esatta per le sfere di Carnot-Carath´ eodory nel gruppo di Heisenberg, proviamo che: 1. $|\nabla_{\mathbb{H}^{n}} d(z,t)| = 1$ in senso classico per ogni $(z,t) \in \mathbb{H}^{n}$ con $z \neq 0$, dove $d$ è la distanza dall’origine; 2. Le sfere metriche non sono insiemi isoperimetrici ottimali nel gruppo di Heisenberg.
@article{RLIN_2000_9_11_3_a1,
     author = {Monti, Roberto},
     title = {Some properties of {Carnot-Carath\'eodory} balls in the {Heisenberg} group},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {155--167},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {3},
     year = {2000},
     zbl = {1197.53064},
     mrnumber = {1325922},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a1/}
}
TY  - JOUR
AU  - Monti, Roberto
TI  - Some properties of Carnot-Carathéodory balls in the Heisenberg group
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 155
EP  - 167
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a1/
LA  - en
ID  - RLIN_2000_9_11_3_a1
ER  - 
%0 Journal Article
%A Monti, Roberto
%T Some properties of Carnot-Carathéodory balls in the Heisenberg group
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 155-167
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a1/
%G en
%F RLIN_2000_9_11_3_a1
Monti, Roberto. Some properties of Carnot-Carathéodory balls in the Heisenberg group. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 155-167. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a1/

[1] V. Barbu, Mathematical methods in optimization of differential systems. Kluwer, Dordrecht 1994. | DOI | MR | Zbl

[2] A. Bellaïche, The tangent space in subriemannian geometry. In: A. Bellaïche - J. Risler (eds), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser, Basel 1996. | Zbl

[3] G. Bellettini - M. Paolini - S. Venturini, Some results in surface measure in Calculus of Variations. Ann. Mat. Pura Appl., (4), 170, 1996, 329-357. | DOI | MR | Zbl

[4] R.W. Brockett, Control theory and singular Riemannian geometry. In: P.J. Hilton - G.S. Young, New directions in applied mathematics. Springer-Verlag, New York 1981. | MR | Zbl

[5] Yu.D. Burago - V.A. Zalgaller, Geometric inequalities. Springer-Verlag, Berlin 1988. | MR | Zbl

[6] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Acc. Lincei Mem. fis., s. 8, v. 5, 1958, 33-44. | MR | Zbl

[7] G.B. Folland - E.M. Stein, Hardy spaces on homogeneous groups. Princeton University Press, 1982. | MR | Zbl

[8] B. Franchi, Stime subellittiche e metriche riemanniane singolari II. Seminario di Analisi Matematica, Università di Bologna, 1983, VIII-1 VIII-17.

[9] B. Franchi - S. Gallot - R.L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. | fulltext EuDML | DOI | MR | Zbl

[10] B. Franchi - R. Serapioni - F. Serra Cassano, Meyers-Serrin Type Theorems and Relaxation of Variational Integrals Depending Vector Fields. Houston Journal of Mathematics, 22, 4, 1996, 859-889. | MR | Zbl

[11] B. Franchi - R. Serapioni - F. Serra Cassano, Approximation and Imbedding Theorems for Weighted Sobolev Spaces Associated with Lipschitz Continuous Vector Fields. Bollettino U.M.I., 7, 11-B, 1997, 83-117. | MR | Zbl

[12] B. Franchi - R. Serapioni - F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group. Preprint 2000. | DOI | MR | Zbl

[13] N. Garofalo - D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | DOI | MR | Zbl

[14] N. Garofalo - D.M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot Carathéodory spaces. Jour. Analyse Mathematique, 74, 1998, 67-97. | DOI | MR | Zbl

[15] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math., 139, 1977, 1-2, 95-153. | MR | Zbl

[16] M. Gromov, Carnot-Carathéodory spaces seen from within. In: A. Bellaïche - J. Risler (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser, Basel 1996. | MR | Zbl

[17] M. Gromov, Structures métriques pour les variétés riemanniennes. CEDIC, Paris 1981. | MR | Zbl

[18] D. Jerison - A. Sanchez Calle, Subelliptic, second order differential operators. In: Complex analysis III. Springer, 1987, 46-77. | DOI | MR | Zbl

[19] W. Liu - H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc., 118, 1995. | MR | Zbl

[20] R. Montgomery, Abnormal minimizers. SIAM J. Control Optim., 32, 1994, 1605-1620. | DOI | MR | Zbl

[21] R. Monti - F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces. Forthcoming. | Zbl

[22] P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg. C.R. Acad. Sci. Paris, 295, I, 1982, 127-130. | MR | Zbl

[23] E.M. Stein, Harmonic Analysis. Princeton University Press, 1993. | MR | Zbl

[24] R.S. Strichartz, Sub-Riemannian geometry. J. Differential Geom., 24, 1986, 221-263.[Corrections to «Sub-Riemannian geometry». J. Differential Geom., 30, 1989, 595-596]. | fulltext mini-dml | fulltext mini-dml | MR | Zbl