Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2000_9_11_3_a0, author = {Karczewska, Anna and Zabczyk, Jerzy}, title = {Regularity of solutions to stochastic {Volterra} equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {141--154}, publisher = {mathdoc}, volume = {Ser. 9, 11}, number = {3}, year = {2000}, zbl = {1072.60051}, mrnumber = {611857}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/} }
TY - JOUR AU - Karczewska, Anna AU - Zabczyk, Jerzy TI - Regularity of solutions to stochastic Volterra equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2000 SP - 141 EP - 154 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/ LA - en ID - RLIN_2000_9_11_3_a0 ER -
%0 Journal Article %A Karczewska, Anna %A Zabczyk, Jerzy %T Regularity of solutions to stochastic Volterra equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2000 %P 141-154 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/ %G en %F RLIN_2000_9_11_3_a0
Karczewska, Anna; Zabczyk, Jerzy. Regularity of solutions to stochastic Volterra equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 141-154. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/
[1] The geometry of random fields. John Wiley & Sons, New York 1981. | MR | Zbl
,[2] Langevin equation for $S^{1}$-valued Gaussian processes and fluctuation limits of infinite particle systems. Probab. Theory and Related Fields, 73, 1986, 227-244. | DOI | MR | Zbl
- ,[3] Itȏ stochastic integral in the dual of a nuclear space. Journal of Multivariate Analysis, 32, 1989, 40-58. | DOI | MR | Zbl
- ,[4] Stochastic integral for inhomogeneous Wiener process in the dual of a nuclear space. Journal of Multivariate Analysis, 34, 1990, 185-210. | DOI | MR | Zbl
- ,[5] Stationary distributions for generalized Ornstein-Uhlenbeck processes in conuclear space. Preprint, 1997.
- ,[6] Invariant measures for generalized Langevin equations in conuclear space. Stochastic Processes and Their Applications, 84, 1999, 1-24. | DOI | MR | Zbl
- ,[7] Some results on stochastic convolutions arising in Volterra equations perturbed by noise. Rend. Mat. Acc. Lincei, s. 9, v. 7, 1996, 147-153. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[8] White noise perturbation of the heat equation in materials with memory. Dynamic Systems and Applications, 6, 1997, 441-460. | MR | Zbl
- ,[9] White noise perturbation of the equations of linear parabolic viscoelasticity. Rendiconti Trieste, 1997. | Zbl
- - ,[10] The stochastic wave equation in two spatial dimensions. The Annals of Probability, No. 1, 26, 1998, 187-212. | fulltext mini-dml | DOI | MR | Zbl
- ,[11] Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications, vol. 44, Cambridge University Press, Cambridge 1992. | DOI | MR | Zbl
- ,[12] Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim., 22, 1990, 241-263. | DOI | MR | Zbl
- ,[13] Generalized functions 4. Applications of harmonic analysis. Academic Press, New York 1964. | Zbl
- ,[14] Persistence criteria for a class of critical branching particle systems in continuous time. The Annals of Probability, No. 1, 19, 1991, 266-288. | fulltext mini-dml | MR | Zbl
- ,[15] Distribution valued processes arising from independent Brownian motions. Mathematische Zeitschrift, 182, 1983, 17-33. | fulltext EuDML | DOI | MR | Zbl
,[16] Foundations of stochastic differential equations in infinite dimensional spaces. SIAM, Philadelphia 1984. | DOI | MR | Zbl
,[17] A note on stochastic wave equations. Preprint 574, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1997. In: G. Lumer - L. Weis (eds.), Evolution Equations and their Applications in Physical and Life Sciences. Proceedings of the 6th International Conference (Bad Herrenhalb 1998), Marcel Dekker, to appear. | MR | Zbl
- ,[18] Stochastic PDEs with function-valued solutions. Preprint 33, Scuola Normale Superiore di Pisa, Pisa 1997. In: Ph. Clément - F. den Hollander - J. van Neerven - B. de Pagter (eds.), Infinite-Dimensional Stochastic Analysis. Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences (Amsterdam 1999), North Holland, to appear. | MR | Zbl
- ,[19] Regularity of solutions to stochastic Volterra equations. Preprint 17, Scuola Normale Superiore di Pisa, Pisa 1999. | MR | Zbl
- ,[20] Foundations of modern potential theory. Springer-Verlag, Berlin 1972. | MR | Zbl
,[21] On stochastic wave equation in two space dimensions: regularity of the solution and its density. Preprint 98/9, University Paris 10, Nanterre 1998. | Zbl
- ,[22] A stochastic wave equation in two space dimension: smoothness of the law. The Annals of Probability, to appear. | fulltext mini-dml | Zbl
- ,[23] Long time existence for the wave equations with a noise term. The Annals of Probability, No. 1, 25, 1997, 133-151. | fulltext mini-dml | DOI | MR | Zbl
,[24] Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl., 72, 1997, 187-204. | DOI | MR | Zbl
- ,[25] Nonlinear stochastic wave and heat equations. Preprint 584, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1998. | DOI | MR | Zbl
- ,[26] Evolutionary integral equations and applications. Birkhäuser, Basel 1993. | DOI | MR | Zbl
,[27] Stochastic Volterra equations in the plane: smoothness of the law. Preprint 226, Universitat de Barcelona 1997. | Zbl
- ,[28] Large deviations for stochastic Volterra equations in the plane. Preprint 233, Universitat de Barcelona 1997. | Zbl
- ,[29] On space-time regularity for the stochastic heat equation on Lie groups. Journal of Functional Analysis, 169, 1999, 559-604. | DOI | MR | Zbl
- ,[30] An introduction to stochastic partial differential equations. In: P. L. Hennequin (ed.), Ecole d’Eté de Probabilités de Saint-Flour XIV-1984. Lecture Notes in Math., 1180, Springer-Verlag, New York-Berlin 1986, 265-439. | DOI | MR | Zbl
,