Regularity of solutions to stochastic Volterra equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 141-154.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study regularity of stochastic convolutions solving Volterra equations on $\mathbb{R}^{d}$ driven by a spatially homogeneous Wiener process. General results are applied to stochastic parabolic equations with fractional powers of Laplacian.
Viene studiata la regolarità di convoluzioni stocastiche risolvendo un’equazione di Volterra in $\mathbb{R}^{d}$ perturbata da un processo di Wiener spazialmente omogeneo. I risultati generali ottenuti sono applicati a equazioni paraboliche stocastiche con una potenza frazionaria del Laplaciano.
@article{RLIN_2000_9_11_3_a0,
     author = {Karczewska, Anna and Zabczyk, Jerzy},
     title = {Regularity of solutions to stochastic {Volterra} equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {3},
     year = {2000},
     zbl = {1072.60051},
     mrnumber = {611857},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/}
}
TY  - JOUR
AU  - Karczewska, Anna
AU  - Zabczyk, Jerzy
TI  - Regularity of solutions to stochastic Volterra equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 141
EP  - 154
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/
LA  - en
ID  - RLIN_2000_9_11_3_a0
ER  - 
%0 Journal Article
%A Karczewska, Anna
%A Zabczyk, Jerzy
%T Regularity of solutions to stochastic Volterra equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 141-154
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/
%G en
%F RLIN_2000_9_11_3_a0
Karczewska, Anna; Zabczyk, Jerzy. Regularity of solutions to stochastic Volterra equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 141-154. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a0/

[1] R. Adler, The geometry of random fields. John Wiley & Sons, New York 1981. | MR | Zbl

[2] T. Bojdecki - L.G. Gorostiza, Langevin equation for $S^{1}$-valued Gaussian processes and fluctuation limits of infinite particle systems. Probab. Theory and Related Fields, 73, 1986, 227-244. | DOI | MR | Zbl

[3] T. Bojdecki - J. Jakubowski, Itȏ stochastic integral in the dual of a nuclear space. Journal of Multivariate Analysis, 32, 1989, 40-58. | DOI | MR | Zbl

[4] T. Bojdecki - J. Jakubowski, Stochastic integral for inhomogeneous Wiener process in the dual of a nuclear space. Journal of Multivariate Analysis, 34, 1990, 185-210. | DOI | MR | Zbl

[5] T. Bojdecki - J. Jakubowski, Stationary distributions for generalized Ornstein-Uhlenbeck processes in conuclear space. Preprint, 1997.

[6] T. Bojdecki - J. Jakubowski, Invariant measures for generalized Langevin equations in conuclear space. Stochastic Processes and Their Applications, 84, 1999, 1-24. | DOI | MR | Zbl

[7] Ph. Clément - G. Da Prato, Some results on stochastic convolutions arising in Volterra equations perturbed by noise. Rend. Mat. Acc. Lincei, s. 9, v. 7, 1996, 147-153. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[8] Ph. Clément - G. Da Prato, White noise perturbation of the heat equation in materials with memory. Dynamic Systems and Applications, 6, 1997, 441-460. | MR | Zbl

[9] Ph. Clément - G. Da Prato - J. Prüss, White noise perturbation of the equations of linear parabolic viscoelasticity. Rendiconti Trieste, 1997. | Zbl

[10] R. Dalang - N. Frangos, The stochastic wave equation in two spatial dimensions. The Annals of Probability, No. 1, 26, 1998, 187-212. | fulltext mini-dml | DOI | MR | Zbl

[11] G. Da Prato - J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications, vol. 44, Cambridge University Press, Cambridge 1992. | DOI | MR | Zbl

[12] D. Dawson - G. Gorostiza, Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim., 22, 1990, 241-263. | DOI | MR | Zbl

[13] M. Gel'Fand - N. Vilenkin, Generalized functions 4. Applications of harmonic analysis. Academic Press, New York 1964. | Zbl

[14] L. G. Gorostiza - A. Wakolbinger, Persistence criteria for a class of critical branching particle systems in continuous time. The Annals of Probability, No. 1, 19, 1991, 266-288. | fulltext mini-dml | MR | Zbl

[15] K. Itȏ, Distribution valued processes arising from independent Brownian motions. Mathematische Zeitschrift, 182, 1983, 17-33. | fulltext EuDML | DOI | MR | Zbl

[16] K. Itȏ, Foundations of stochastic differential equations in infinite dimensional spaces. SIAM, Philadelphia 1984. | DOI | MR | Zbl

[17] A. Karczewska - J. Zabczyk, A note on stochastic wave equations. Preprint 574, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1997. In: G. Lumer - L. Weis (eds.), Evolution Equations and their Applications in Physical and Life Sciences. Proceedings of the 6th International Conference (Bad Herrenhalb 1998), Marcel Dekker, to appear. | MR | Zbl

[18] A. Karczewska - J. Zabczyk, Stochastic PDEs with function-valued solutions. Preprint 33, Scuola Normale Superiore di Pisa, Pisa 1997. In: Ph. Clément - F. den Hollander - J. van Neerven - B. de Pagter (eds.), Infinite-Dimensional Stochastic Analysis. Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences (Amsterdam 1999), North Holland, to appear. | MR | Zbl

[19] A. Karczewska - J. Zabczyk, Regularity of solutions to stochastic Volterra equations. Preprint 17, Scuola Normale Superiore di Pisa, Pisa 1999. | MR | Zbl

[20] N. S. Landkof, Foundations of modern potential theory. Springer-Verlag, Berlin 1972. | MR | Zbl

[21] A. Millet - P.-L. Morien, On stochastic wave equation in two space dimensions: regularity of the solution and its density. Preprint 98/9, University Paris 10, Nanterre 1998. | Zbl

[22] A. Millet - M. Sanz-Solé, A stochastic wave equation in two space dimension: smoothness of the law. The Annals of Probability, to appear. | fulltext mini-dml | Zbl

[23] C. Mueller, Long time existence for the wave equations with a noise term. The Annals of Probability, No. 1, 25, 1997, 133-151. | fulltext mini-dml | DOI | MR | Zbl

[24] S. Peszat - J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl., 72, 1997, 187-204. | DOI | MR | Zbl

[25] S. Peszat - J. Zabczyk, Nonlinear stochastic wave and heat equations. Preprint 584, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1998. | DOI | MR | Zbl

[26] J. Prüss, Evolutionary integral equations and applications. Birkhäuser, Basel 1993. | DOI | MR | Zbl

[27] C. Rovira - M. Sanz-Solé, Stochastic Volterra equations in the plane: smoothness of the law. Preprint 226, Universitat de Barcelona 1997. | Zbl

[28] C. Rovira - M. Sanz-Solé, Large deviations for stochastic Volterra equations in the plane. Preprint 233, Universitat de Barcelona 1997. | Zbl

[29] S. Tindel - F. Viens, On space-time regularity for the stochastic heat equation on Lie groups. Journal of Functional Analysis, 169, 1999, 559-604. | DOI | MR | Zbl

[30] J. Walsh, An introduction to stochastic partial differential equations. In: P. L. Hennequin (ed.), Ecole d’Eté de Probabilités de Saint-Flour XIV-1984. Lecture Notes in Math., 1180, Springer-Verlag, New York-Berlin 1986, 265-439. | DOI | MR | Zbl