Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2000_9_11_2_a0, author = {Zabczyk, Jerzy}, title = {Stochastic invariance and consistency of financial models}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {67--80}, publisher = {mathdoc}, volume = {Ser. 9, 11}, number = {2}, year = {2000}, zbl = {0978.60039}, mrnumber = {1134779}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a0/} }
TY - JOUR AU - Zabczyk, Jerzy TI - Stochastic invariance and consistency of financial models JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2000 SP - 67 EP - 80 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a0/ LA - en ID - RLIN_2000_9_11_2_a0 ER -
%0 Journal Article %A Zabczyk, Jerzy %T Stochastic invariance and consistency of financial models %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2000 %P 67-80 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a0/ %G en %F RLIN_2000_9_11_2_a0
Zabczyk, Jerzy. Stochastic invariance and consistency of financial models. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 2, pp. 67-80. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a0/
[1] Viability Theory. Birkhäuser, Boston-Basel 1991. | MR | Zbl
,[2] The viability theorem for stochastic differential inclusions. Stochastic Analysis and Applications, 16, 1998, 1-15. | DOI | MR | Zbl
- ,[3] Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations. Annals of Probability, 23, 1995, 178-222. | fulltext mini-dml | MR | Zbl
- - ,[4] Interest rate dynamics and consistent forward rate curves. Math. Finance, to appear. | DOI | MR | Zbl
- ,[5] Minimal realizations of forward rates. Finance and Stochastics, vol. 3, 1999, 423-432.
- ,[6] Towards a general theory of bond markets. Finance and Stochastic, vol. 1, 1996, 141-174. | MR | Zbl
- - - ,[7] On the existence of finite dimensional realizations for nonlinear forward rate models. Preprint, March 1999. | Zbl
- ,[8] The market model of interest rate dynamics. Math. Finance, 7, 1997, 127-154. | DOI | MR | Zbl
- - ,[9] A multifactor Gauss Markov implementation of Heath, Jarrow and Morton. Math. Finance, 4, 1994, 259-283. | Zbl
- ,[10] Phenomenology of the interest rate curve: a statistical analysis of the term structure deformations. Working paper, 1997. (http:= =econwpa.wustl.edu/ewp-fin/9712009). | Zbl
- - - - ,[11] Modelling term structure dynamics: an infinite dimensional approach. International Journal of Theoretical and Applied Finance, to appear. | DOI | MR | Zbl
,[12] Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge-New York 1992. | DOI | MR | Zbl
- ,[13] Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge-New York 1996. | DOI | MR | Zbl
- ,[14] Invariant Manifolds for Weak Solutions to Stochastic Equations. Manuscript, March 1999. | DOI | MR | Zbl
,[15] Some remarks on the market model of interest rates. Control and Cybernetics, vol. 25, 1996, 1233-1244. | MR | Zbl
,[16] Bond pricing and the term structure of interest rates: a new methodology. Econometrica, 60, 1992, 77-101. | Zbl
- - ,[17] A note on invariance for semilinear differential equations. Bull. Pol. Sci., 44, 1996, 179-183. | MR | Zbl
,[18] Invariance problem for evolution equations. PhD Thesis, Institute of Mathematics Polish Academy of Sciences, Warsaw 1998 (in Polish).
,[19] Stochastic invariance in infinite dimensions. Preprint 591, Institute of Mathematics Polish Academy of Sciences, Warsaw, October 1998.
,[20] Nagumo’s type theorems for stochastic equations. PhD Thesis, Institute of Mathematics Polish Academy of Sciences, 1994.
,[21] Invariance for stochastic equations with regular coefficients. Stochastic Analysis and Applications, 15, 1997, 91-101. | DOI | MR | Zbl
,[22] The support of the solution to a hyperbolic spde. Probab. Th. Rel. Fields, 84, 1994, 361-387. | DOI | MR | Zbl
- ,[23] Approximation and support theorem for a two space-dimensional wave equations. Mathematical Sciences Research Institute, Preprint No. 1998-020, Berkeley, California. | fulltext mini-dml
- ,[24] Stochastic PDEs and term structure models. Journees International de Finance, IGR-AFFI, La Baule 1993.
,[25] Martingale Methods in Financial Modelling. Applications of Mathematics, vol. 36, Springer-Verlag, 1997. | MR | Zbl
- ,[26] Invariant sets for a class of semilinear equations of evolution. Nonl. Anal. Theor., 1, 1977, 187-196. | MR | Zbl
,[27] Differential equations, flow invariance. Pitman Lecture Notes, Boston 1984.
,[28] Comments on transition semigroups and stochastic invariance. Scuola Normale Superiore, Pisa 1998, preprint. | MR
- ,[29] An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations. Stoch. Anal. Appl., 13, 1995, 601-626. | DOI | MR | Zbl
,[30] Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions. Dissertationes Mathematicae, CCCXXV, 1993. | MR | Zbl
,[31] On the support of diffusion processes with applications to the strong maximum principle. Proceedings 6th Berkeley Symposium Math. Statist. Probab., vol. 3, University of California Press, Berkeley 1972, 333-359. | fulltext mini-dml | MR | Zbl
- ,[32] Functional Analysis. Springer-Verlag, 1965.
,[33] Mathematical Control Theory: An Introduction. Birkhäuser, Boston 1992. | MR | Zbl
,[34] Stochastic invariance and consistency of financial models. Preprints di Matematica n. 7, Scuola Normale Superiore, Pisa 1999. | MR | Zbl
,